Methylation: How can it be supported by nutrition?

As our understanding of gene regulation and metabolic processes continues to evolve, research is now investigating the links between biochemical methylation and the development of disease or dysfunction. The processes of methylation, or “one-carbon metabolism”, are the mechanisms through which methyl groups are transferred from one-carbon molecules to DNA or proteins that are required for fundamental physiological activity (98).

As with all processes of the body, a balance is required in methyl status for proper function. Several nutrients are involved in maintaining a balance between hypomethylated and hypermethylated states, including folate, vitamin B2, B6, B12, choline, betaine, and methionine (4). This article details the mechanisms of methylation, provides information on assessing the need for methylation support, and reviews evidence on dietary and supplement interventions that may support appropriate methylation.

What is methylation?

Biochemical methylation reactions have been widely studied with respect to their roles in gene expression, DNA/RNA synthesis, protein synthesis, central nervous system development, immune function, detoxification, neurotransmitter production and metabolism, hormone homeostasis, and cellular metabolism and structure (44).

Two important actions of methylation reactions include the recycling of homocysteine via folate metabolism and the methylation of DNA, hormones, neurotransmitters, and other compounds such as pharmaceuticals. The accumulation of homocysteine is associated with a plethora of conditions, while disrupted DNA methylation can increase the risk for developmental conditions in future generations, as well as the development of disorders from epigenetic modification (4).

The processes of methylation readily depend on an adequate supply of nutrients, most significantly B vitamins, folate in particular. Vitamin B6 and Vitamin B12 act as cofactors in the conversion of tetrahydrofolate (THF) to 5,10-methyleneTHF, and of 5-methylTHF to THF, respectively. Vitamin B12 simultaneously converts homocysteine to methionine using betaine. Subsequential production of S-adenosylmethionine (SAMe) also donates its methyl group to DNA via DNA methyltransferases (DNMT) (4). Depletions in the nutrients involved in methylation cycles may disrupt methylation activity and lead to reductions in metabolic and genetic methylation processes (190).

Several nutrients are involved in maintaining a balance between hypomethylated and hypermethylated states.

Assessing the need for methylation support

As methylation is involved in the development of a wide range of conditions and in preventing physiological dysregulation, it can be difficult to determine whether unbalanced methylation status is the cause of a disorder or dysfunction, or whether the pathophysiology should be attributed to another underlying factor. Disharmony in methylation processes in the body has been linked with conditions of birth, pregnancy, and fertility (96), as well as cancer, cardiometabolic conditions, and neurological conditions (76).

Nevertheless, there are several clues and tools that practitioners may use to identify the presence of impaired methylation status. This includes conducting genetic profiling, measuring metabolites of methylation, appraising inflammatory status and oxidative stress, and determining nutrient status. It is recommended that practitioners employ multiple techniques to gain a broader understanding of the potential implications of methylation status to avoid prognosis misinterpretations (44).

Genetic profiling

Genetic profiling can be used for the identification of polymorphisms in genes of enzymes that often lead to reductions in methylation activity. In general, states of DNA hypermethylation downregulates gene transcription while states of hypomethylation may upregulate genetic expression, though this can be specific to individual cell types. For example, reduced global methylation status is often observed in cancer and may lead to the upregulation of cellular proliferation, while tumor suppressor genes may be hypermethylated, resulting in reduced activity (181). 

Polymorphisms leading to altered methylation processes may include enzymes such as:

  • Adenosyl homocysteinase (AHCY) (41)
  • Betaine-homocysteine methyltransferase (BHMT) (89)
  • Catechol-O-methyltransferase (COMT) (79)
  • Cystathionine beta-synthase (CBS) (116)
  • Glycine-N-methyltransferase (GMNT) (68)
  • Methionine adenosyltransferase I, alpha (MAT1A) (14)
  • Methylenetetrahydrofolate reductase (MTHFR) (188)
  • Serine hydroxymethyl transferases (SHMT) (144)
  • 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) / Methionine Synthase (MS) (148)

5-methyltetrahydrofolate-homocysteine methyltransferase reductase / Methionine synthase reductase (MTRR) (40)

Methylation metabolite status

The levels and proportions of metabolites involved in methylation reactions may be measured to provide an indication of potential imbalances in methylation cycles.

Most commonly, this includes (44):

  • Elevated homocysteine, which may lead to reduced DNA methylation (67)
  • Elevated S-adenosyl homocysteine (SAH) (202)
  • Elevated cystathionine as a result of disrupted remethylation (163)
  • Reduced SAMe, which provides an indication of reduced methylation potential (142)
  • Reduced SAMe:SAH ratio, which may indicate reduced methylation potential (38)

Inflammatory status

Inflammatory markers can play a role in DNA methylation leading to inflammatory conditions. 

Examples include (64):

  • DNA hypomethylation from high fat, inflammatory diets, which may increase TNF-α, IL-6 and IL-1β
  • DNA hypomethylation from upregulated toll-like receptors, which facilitate inflammation in obesity and other conditions such as cystic fibrosis
  • DNA methylation may be inversely associated with CRP, ICAM-1 and VCAM-1 after exposure to polluted air
  • DNA hypomethylation of genes associated with inflammation in rheumatoid arthritis
woman and doctor chatting in the doctor's office
There are several clues and tools that practitioners may use to identify the presence of impaired methylation status.

Oxidative stress

Metabolites associated with oxidative stress can be measured as an indication of disrupted methylation status. To manage oxidative stress, the body increases glutathione synthesis, which requires deferral of the supply of homocysteine from methylation. Oxidative stress can also cause DNA damage and hypomethylation (32).

Examples of commonly measured markers of oxidative stress include:

  • 8-OHdG (marks DNA damage) (146)
  • Alpha-hydroxybutyrate (marks glutathione status) (95)
  • F2-isoprostanes (marks activity of free radicals on arachidonic acid) (191)
  • Lipid peroxides (marks activity of free radicals on lipids) (12)

Nutrient status

The identification of nutrient levels may provide information on the underlying causes of altered methylation capacity. Table 1 provides a summary of nutrients involved in methylation and contains clinical information to support methylation processes.

It is important to note that while evidence is primarily presented for the nutrients in isolation, varying combinations of these ingredients, especially the B vitamins, may provide additional benefit in supporting methylation outcomes (31, 87).

Pathologies linked to methylation disorders

Alzheimer’s disease: While research is inconclusive, cerebral and cellular specific alteration in DNA methylation may lead to synapse loss, cerebral and hippocampal atrophy, reduced amyloid Aβ degradation and increased secretion, increased neuroinflammation (IL-1β and IL-6), and reduced BDNF (205).

Autism spectrum disorders: Reduced SAMe and increased SAH leading to DNA methylation disruptions may alter the expression of genes such as MeCP2 and oxytocin receptor genes. Impaired GSH status may lead to compromised brain cell development and connectivity from oxidative stress (110).

Cancer: DNA hypermethylation of tumor suppressor genes may reduce transcription of proteins that inhibit tumor growth, while hypomethylation of proto-oncogene promoters can increase oncogenesis. Hypermethylation can also lead to a higher risk of somatic mutations that cause cancers, while reduced methylation may lead to decreased transposon activity (105).

Cardiovascular disease: Hyperhomocysteinemia may lead to atherosclerosis, reduce vascular elasticity and NO, and increase platelet coagulation, vascular smooth cell proliferation, collagen synthesis, and oxidative stress leading to endothelial dysfunction (49).

Chronic liver diseases: Reduced production of SAMe may lead to the release of hepatic cytokines, impaired GSH synthesis from oxidative stress may impair detoxification pathways, and increased homocysteine (Hcy) may lead to necrosis and fibrogenesis (43).

Coronary artery disease: Increased Hcy may reduce NO leading to endothelial dysfunction, and increase platelet coagulation and vascular smooth cell proliferation (159).

Depression: Increased Hcy may over-activate NMDA receptors leading to neurotoxicity, reduce dopamine and serotonin, alter neural plasticity, cause oxidative stress, and impair cerebral vascular function (118).

Diabetic neuropathy: Elevated Hcy may lead to vasoconstriction via reduced NO, limiting blood flow to nerves. The use of metformin therapy may lead to increases in Hcy (113).

Dyslipidemia: Reductions in SAMe from raised Hcy may lead to reduced synthesis of phospholipids, ultimately causing a build-up of hepatic cholesterol and lipids (136).

Fat mass and homocysteine management: Increased Hcy may lead to increased lipid storage through altered DNA methylation mechanisms (47).

Fetal alcohol spectrum disorder: Alcohol may reduce maternal folate status, reduce the production of SAMe, increase SAH, deplete GSH to shift homocysteine to transsulfuration rather than methylation pathways causing DNA hypomethylation, increase oxidative stress, and inhibit MS, MATs, and DMNTs (99).

Fibromyalgia: Reduced DNA methylation may lead to increased gene expression for IL-10 increasing pain threshold, IL-25 increasing Th2 cytokine responses, SLC1A5 and SLC25A22 increasing CNS glutamate receptors, and GRM6 increasing the group III G protein-coupled receptor expression to inhibit cAMP cascade in neuropathic pain (23).

Hypertension: Elevated Hcy may reduce NO and increase asymmetric dimethylarginine and inflammation, leading to endothelial dysfunction. It may also increase metalloproteinase activity, collagen synthesis, and ACE activity (200).

Hypertension with MTHFR 677TT polymorphism: MTHFR polymorphism increases carotid intima-media thickness, carotid plaque, vascular wall thickness and surface area. Increased Hcy and decreased folate, may also lead to higher carotid resistance, endothelial oxidative stress and reduced NO (84, 93, 139, 149).

Male infertility: Hyperhomocysteinemia may lead to increased testicular or spermatic inflammation via MCP-1 and IL-8, while reductions in NO may impair erectile function, spermatogenesis and maturation, sperm motility and fertilization. Increased oxidative stress may cause sperm DNA damage. Reductions in SAMe may reduce testosterone synthesis (45).

man holding his head in pain
Disharmony in methylation processes in the body has been linked with numerous conditions, such as migraines.

Migraine: Elevations in Hcy may cause cerebral vasodilation, or temporary thrombosis and increased coagulation. Associated increases in oxidative stress may impair cerebral vascular endothelial function (11).

Neural tube defects: Reductions in folate status may lead to impaired DNA methylation and nucleotide synthesis, which may be required for adequate neural folding and closure (70).

Osteoporosis: Altered DNA methylation of chondrocytes can lead to imbalances in the synthesis and degradation of cartilage, as well as alterations in extracellular matrix protein compositions. DNA methylation may be influenced by the increased presence of inflammatory cytokines such as IL-1β, TNF-α, or leptin, and reactive oxygen species (112).

Parkinson’s disease: L-Dopa treatments for PD often increase Hcy, which can reduce B vitamin status and possibly compromise dopamine-producing cells via alterations in DNA synthesis or repair, neurotransmitter and protein synthesis, and cellular signaling processes (120).

Polycystic ovarian syndrome: Hypomethylation of genes required for lipid and steroid synthesis may lead to lipid accumulation and hyperandrogenism (141).

Pre-eclampsia: Hyperhomocysteinemia may lead to eNOS inhibition and reduced NO, as well as oxidative stress-related endothelial dysfunction (endothelial cell lesions, vascular fibrosis, altered coagulation, platelet activation, thrombogenesis) (35).

Recurrent pregnancy loss: Hyperhomocysteinemia may lead to embryonic hypomethylation, increased oxidative stress and apoptosis, and reduced embryonic vascularity and cellular proliferation (45).

Renal disease: Elevated Hcy is associated with increased microalbuminuria. Associated increases in oxidative stress, inflammation and DNA hypomethylation may lead to endothelial and mesangial cell dysfunction and renal damage from higher intraglomerular pressure and/or reduced glomerular charge and size selectivity (94).

Schizophrenia: Increased Hcy may over-activate NMDA receptors leading to neurotoxicity, reduce dopamine and serotonin, alter neural plasticity, cause oxidative stress and impair cerebral vascular function (118).

Tardive dyskinesia (anti-psychotic side-effect): Increased DNA methylation of the DLGAP2 gene has been found in both schizophrenia and TD. DLGAP2 plays a role in the organization of synapses and neural signaling (92).

Key nutrients involved in methylation

Several nutrients are involved in maintaining a balance between hypomethylated and hypermethylated states.

Educational in partnership

If you are seeking further education on methylation support, please refer to Dr. Kara Fitzgerald’s Functional Medicine Clinical Immersion. Dr. Fitzgerald’s team provides several high quality educational experiences to further clinical skills in functional medicine and nutrition, including live mentorship and nutritional residency programs.

Dr. Fitzgerald’s team has also produced an excellent resource on supporting methylation processes, titled Methylation Diet & Lifestyle: Whole Being Support for Healthy Methylation and Epigenetic Expression.

  1. Adelufosi, A., Abayomi, O., & Ojo, T.M. (2015). Pyridoxal 5 phosphate for neuroleptic‐induced tardive dyskinesia. Cochrane Database of Systematic Reviews, (4), CD010501.
  2. Ahn, C., Jun, D., Na, J., Choi, Y., & Kim, Y. (2016). Alleviation of hepatic fat accumulation by betaine involves reduction of homocysteine via up-regulation of betaine-homocysteine methyltransferase (BHMT). Biochemical and Biophysical Research Communications, 477(3), 44-447.
  3. Amin, A., Shaaban, O., & Bediawy, M. (2008). N-acetyl cysteine for treatment of recurrent unexplained pregnancy loss. Reproductive biomedicine online, 17(5), 722-726.
  4. Anderson, O., Sant, K., & Dolinoy, D. (2012). Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. Journal of Nutritional Biochemistry, 23(8), 853-859.
  5. Baggott, J., & Tamura, T. (2015). Homocysteine, iron and cardiovascular disease: a hypothesis. Nutrients, 7(2), 1108-1118.
  6. Barreto, F., Simão, A., Morimoto, H., Lozovoy, M., Dichi, I., & Helena da Silva Miglioranza, L. (2014). Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition, 30(7-8), 939-942.
  7. Bertoglio, K., Jill James, S., Deprey, L., Brule, N., & Hendren, R. L. (2010). Pilot study of the effect of methyl B12 treatment on behavioral and biomarker measures in children with autism. Journal of Alternative and Complementary Medicine, 16(5) 555-560.
  8. Bibbins-Domingo, K., Grossman, D., Curry, S., Davidson, K. W., Epling, J. W., Garcia, F.A., Kemper, A. R., … & Tseng, C. W. (2017). Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. JAMA, 317(2), 183-189.
  9. Bostom, A., Gohh, R., & Beaulieu, A. (1997). Treatment of hyperhomocysteinemia in renal transplant recipients: A randomized, placebo-controlled trial.  Annals of Internal Medicine, 127(12), 1089-1092.
  10. Brönstrup, A., Hages, M., Prinz-Langenohl, R., & Pietrzik, K. (1998). Effects of folic acid and combinations of folic acid and vitamin B-12 on plasma homocysteine concentrations in healthy, young women. American Journal of Clinical Nutrition, 68(5), 1104-1110.
  11. Cacciapuoti, F. (2017). Migraine homocysteine‐related: Old and new mechanisms. Neurology and Clinical Neuroscience, 5(5), 137-140.
  12. Campos, A., Molognoni, F., Melo, F., Galdieri, L., Carneiro C. R., D’Almeida, V.,… & Jasiulionis, M. G. (2007). Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia, 9(12), 1111-1121.
  13. Caruso, I., & Pietrogrande, V. (1987). Italian double-blind multicenter study comparing S-adenosylmethionine, naproxen, and placebo in the treatment of degenerative joint disease. The American Journal of Medicine, 83(5A), 66-71.
  14. Chamberlin, M., Ubagai, T., Mudd, S., Levy, H. L. & Chou, J. Y. (1997). Dominant inheritance of isolated hypermethioninemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. American Journal of Human Genetics, 60(3), 540-546.
  15. Chang, C., Lane, H., Tseng, P., Chen, S. J., Liu, C Y, & Lin, C. H. (2019). Effect of N-methyl-D-aspartate-receptor-enhancing agents on cognition in patients with schizophrenia: A systematic review and meta-analysis of double-blind randomised controlled trials. Journal of Psychopharmacoloy, 33(4), 436-448.
  16. Chen, H., Liu, S., Ji, L., Wu, T., Ji, Y., Zhou, Y., Zheng, M., Zhang, M., Xu, W., & Huang, G. (2016). Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: A randomized controlled trial. Mediators of Inflammation, 2016, 5912146.
  17. Clarke, R., Frost, C., Sherliker, P. Lewington, S., Collins, R., Brattstrom, L., Brouwer, I., van Dusseldorp, M., … & Cuskelly, G.(2005). Dose-dependent effects of folic acid on blood concentrations of homocysteine: A meta-analysis of the randomized trials.  The American Journal of Clinical Nutrition, 82, 806-812.
  18. Clarke, R. (2000). Lowering blood homocysteine with folic acid-based supplements: Meta-analysis of randomised trials. Indian Heart Journal 52(7), S59-S64.
  19. Connelly, P., Prentice, N., Cousland, G., & Bonham, J. (2008). A randomised double‐blind placebo‐controlled trial of folic acid supplementation of cholinesterase inhibitors in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 23(2), 155-160.
  20. Coppen, A., & Bailey, J. (2000). Enhancement of the antidepressant action of fluoxetine by folic acid: a randomised, placebo controlled trial. Journal of Affective Disorders, 60(2), 121-130.
  21. Craig, S. A. (2004). Betaine in human nutrition. The American Journal of Clinical Nutrition, 80(3), 539-549.
  22. Cummings, P., Giddens, K., Genest, J., Nassar, B. A., & Title, L. M. (2000). Effect of folic acid and antioxidant vitamins on endothelial dysfunction in patients with coronary artery disease. Journal of the American College of Cardiology, 36(3), 758-765.
  23. D’Agnelli, S., Arendt-Nielsen, L., Gerra, M., Zatorri, K., Boggiani, L., Bacaiarello, M., & Bignami, E. (2019). Fibromyalgia: Genetics and epigenetics insights may provide the basis for the development of diagnostic biomarkers. Molecular Pain, 1744806918819944.
  24. D’Andrea, E., Hey, S., Ramirez, C., Kesselheim, A. S. (2019). Assessment of the role of Nnacin in managing cardiovascular disease outcomes: A systematic review and meta-analysis. JAMA Network Open, 2(4), e192224.
  25. De‐Regil, L., Peña‐Rosas, J., Fernandez-Gaxioloa, A. C., & Rayco-Solon, P. (2015). Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database of Systematic Reviews, (12), CD007950.
  26. De Berardis, D., Orsolini, L.,Serroni, N., Girinelli, G., Iasevoli, F., Tomasetti, C., de Bartolomeis, A., … & Di Giannantonio, M. (2016). A comprehensive review on the efficacy of S-adenosyl-L-methionine in major depressive disorder. CNS & Neurological Disorders DrugTargets, 15(1), 35-44.
  27. Deshmukh, U., Joglekar, C., Lubree, H., Ramdas, L. V., Bhat, D. S., Naik, S. S. … & Yajnik, C. S. (2010). Effect of physiological doses of oral vitamin B12 on plasma homocysteine: A randomized, placebo-controlled, double-blind trial in India. European Journal of Clinical Nutrition, 64(5), 495-502.
  28. Devathasan, G.,Teo, W. & Mylvagnam, A. (1986). Methylcobalamin (CH3-B12; Methycobal) in chronic diabetic neuropathy. A double-blind clinical and electrophysiological study. Clinical Trials Journal, 23(2), 130-140.
  29. Di Benedetto, P., Iona, L. G., & Zidarich, V. (1993). Clinical evaluation of S-adenosyl-L-methionine versus transcutaneous electrical nerve stimulation in primary fibromyalgia. Current therapeutic research, 53(2), 222-229.
  30. Di Rocco, A., Rogers, J. D., Brown, R., Werner, P., & Bottiglieri, T. (2000). S‐adenosyl‐methionine improves depression in patients with Parkinson’s disease in an open‐label clinical trial. Movement Disorders: Official Journal of the Movement Disorder Society, 15(6), 1225-1229.
  31. Dong, H., Pi, F., Ding, Z., Chen, W., Pang, S., Dong, W., & Zhang, Q. (2015). Efficacy of supplementation with B vitamins for stroke prevention: A network meta-analysis of randomized controlled trials. PLoS One, 10(9), e0137533.
  32. Donkena, K. V., Young, C. Y., & Tindall, D. J. (2010). Oxidative stress and DNA methylation in prostate cancer. Obstetrics and gynecology international, 2010.
  33. Dording, C. M., Mischoulon, D., Shyu, I., Alpert, J. E., & Papakostas, G. I. (2012). SAMe and sexual functioning. European Psychiatry, 27(6), 451-454.
  34. Durga, J., van Boxtel, M. P., Schouten, E. G., Kok, F. J., Jolles, J., Katan, M. B., & Verhoef, P. (2007). Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: A randomised, double blind, controlled trial. The Lancet, 369(9557), 208-216.
  35. Dymara-Konopka, W., & Laskowska, M. (2019). The role of nitric oxide, ADMA, and homocysteine in the etiopathogenesis of preeclampsia. International journal of molecular sciences, 20(11), 2757.
  36. ElGendy, K., Malcomson, F. C., Lara, J. G., Bradburn, D. M., & Mathers, J. C. (2018). Effects of dietary interventions on DNA methylation in adult humans: Systematic review and meta-analysis. British Journal of Nutrition, 120(9), 961-976.
  37. El Mesallamy, H. O., El-Demerdash, E., Hammad, L. N., & El Magdoub, H. M. (2010). Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetology & Metabolic Syndrome, 2(1), 46.
  38. Elshorbagy, A. K., Jernerén, F., Samocha-Bonet, D., Refsum, H., & Heilbronn, L. K. (2016). Serum S-adenosylmethionine, but not methionine, increases in response to overfeeding in humans. Nutrition & Diabetes, 6(1), e192.
  39. Evans, J. C., Huddler, D. P., Jiracek, J., Castro, C., Millian, N. S., Garrow, T. A., & Ludwig, M. L. (2002). Betaine-homocysteine methyltransferase: Zinc in a distorted barrel. Structure, 10(9), 1159-1171.
  40. Fang, D. H., Ji, Q., Fan, C. H., An, Q., & Li, J. (2014). Methionine synthase reductase A66G polymorphism and leukemia risk: Evidence from published studies. Leukemia & Lymphoma, 55(8), 1910-1914.
  41. Feng, Q., Keshtgarpour, M., Pelleymounter, L. L., Moon, I., Kalari, K. R., Eckloff, B. W., … & Weinshilboum, R. M. (2009). Human S‐adenosylhomocysteine hydrolase: common gene sequence variation and functional genomic characterization. Journal of Neurochemistry, 110(6), 1806-1817.
  42. Fernandes, B. S., Dean, O. M., Dodd, S., Malhi, G. S., & Berk, M. (2016). N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. The Journal of Clinical Psychiatry, 77(4), e457-66
  43. Finkelstein, J. (2003). Methionine metabolism in liver diseases. The American Journal of Clinical Nutrition, 77(5), 1094-1095.
  44. Fitzgerald, K., & Hodges, R. (2016). Methylation, Diet & Lifestyle: Whole being support for healthy methylation and epigenetic expression. Retrieved from https://www.drkarafitzgerald.com/product/methylation-diet-lifestyle-ebook/
  45. Forges, T., Monnier-Barbarino, P., Alberto, J. M., Gueant-Rodriguez, R. M., Daval, J. L., & Gueant, J. L. (2007). Impact of folate and homocysteine metabolism on human reproductive health. Human Reproduction Update, 13(3), 225-238.
  46. Frezza, M., Surrenti, C., Manzillo, G., Fiaccadori, F., Bortolini, M., & Di Padova, C. (1990). Oral S-adenosylmethionine in the symptomatic treatment of intrahepatic cholestasis: A double-blind, placebo-controlled study. Gastroenterology, 99(1), 211-215.
  47. Fu, L., Li, Y. N., Luo, D., Deng, S., & Hu, Y. Q. (2019). Plausible relationship between homocysteine and obesity risk via MTHFR gene: A meta-analysis of 38,317 individuals implementing Mendelian randomization. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 1201.
  48. Galizia, I., Oldani, L., Macritchie, K., Amari, E., Dougall, D., Jones, T. N., … & Young, A. H. (2016). S‐adenosyl methionine (SAMe) for depression in adults. Cochrane Database of Systematic Reviews, (10).
  49. Ganguly, P., & Alam, S. F. (2015). Role of homocysteine in the development of cardiovascular disease. Nutrition Journal, 14(1), 6.
  50. Gao, X., Zhang, H., Guo, X. F., Li, K., Li, S., & Li, D. (2019). Effect of betaine on reducing body fat—A systematic review and meta-analysis of randomized controlled trials. Nutrients, 11(10), 2480.
  51. García-Minguillán, C. J., Fernandez-Ballart, J. D., Ceruelo, S., Ríos, L., Bueno, O., Berrocal-Zaragoza, M. I., … & Murphy, M. M. (2014). Riboflavin status modifies the effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms on homocysteine. Genes & Nutrition, 9(6), 435.
  52. Gaurav, K., Himanshu, C., & Rai, D. V. (2014). Nutritional quality enhancement of plants by improving its methionine content. International Journal of Research and Development in Pharmacy and Life Sciences, 3(2), 859-865.
  53. Ghanizadeh, A., & Moghimi-Sarani, E. (2013). A randomized double blind placebo controlled clinical trial of N-Acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry, 13(1), 196.
  54. Godfrey, P. S. A., Toone, B. K., Bottiglien, T., Laundy, M., Reynolds, E. H., Carney, M. W. P., … & Chanarin, I. (1990). Enhancement of recovery from psychiatric illness by methylfolate. The Lancet, 336(8712), 392-395.
  55. Goldberg, A. C. (2004). A meta-analysis of randomized controlled studies on the effects of extended-release niacin in women. The American Journal of Cardiology, 94(1), 121-124.
  56. González, B., Garrido, F., Ortega, R., Martínez-Júlvez, M., Revilla-Guarinos, A., Pérez-Pertejo, Y., … & Pajares, M. A. (2012). NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer. PloS one, 7(11), e50329.
  57. Gregory, J. F., DeRatt, B. N., Rios-Avila, L., Ralat, M., & Stacpoole, P. W. (2016). Vitamin B6 nutritional status and cellular availability of pyridoxal 5′-phosphate govern the function of the transsulfuration pathway’s canonical reactions and hydrogen sulfide production via side reactions. Biochimie, 126, 21-26.
  58. Guilliams, T. G., & Rakel, D. (2018). Chapter 38 – MTHFR, Homocysteine and Nutrient Needs. In Integrative Medicine (4th ed., pp. 395–403). Elsevier.
  59. Guo, Y., Su, Z. Y., & Kong, A. N. T. (2015). Current perspectives on epigenetic modifications by dietary chemopreventive and herbal phytochemicals. Current Pharmacology Reports, 1(4), 245-257.
  60. Guyton, J. R., Blazing, M. A., Hagar, J., Kashyap, M. L., Knopp, R. H., McKenney, J. M., … & Nash, S. D. (2000). Extended-release niacin vs gemfibrozil for the treatment of low levels of high-density lipoprotein cholesterol. Archives of Internal Medicine, 160(8), 1177-1184.
  61. Guyton, J. R., Goldberg, A. C., Kreisberg, R. A., Sprecher, D. L., Superko, H. R., & O’Connor, C. M. (1998). Effectiveness of once-nightly dosing of extended-release niacin alone and in combination for hypercholesterolemia. The American Journal of Cardiology, 82(6), 737-743.
  62. Hardan, A. Y., Fung, L. K., Libove, R. A., Obukhanych, T. V., Nair, S., Herzenberg, L. A., … & Tirouvanziam, R. (2012). A randomized controlled pilot trial of oral N-acetylcysteine in children with autism. Biological Psychiatry, 71(11), 956-961.
  63. Hendren, R. L., James, S. J., Widjaja, F., Lawton, B., Rosenblatt, A., & Bent, S. (2016). Randomized, placebo-controlled trial of methyl B12 for children with autism. Journal of Child and Adolescent Psychopharmacology, 26(9), 774-783.
  64. Horsburgh, S., Robson-Ansley, P., Adams, R., & Smith, C. (2015). Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exercise Immunology Review, 21, 26-41.
  65. Huang, T., Wahlqvist, M. L., & Li, D. (2012). Effect of n-3 polyunsaturated fatty acid on gene expression of the critical enzymes involved in homocysteine metabolism. Nutrition Journal, 11(1), 6.
  66. Hustad, S., Midttun, Ø., Schneede, J., Vollset, S. E., Grotmol, T., & Ueland, P. M. (2007). The methylenetetrahydrofolate reductase 677C→ T polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. The American Journal of Human Genetics, 80(5), 846-855.
  67. Iacobazzi, V., Infantino, V., Castegna, A., & Andria, G. (2014). Hyperhomocysteinemia: Related genetic diseases and congenital defects, abnormal DNA methylation and newborn screening issues. Molecular Genetics and Metabolism, 113(1-2), 27-33.
  68. Ianni, M., Porcellini, E., Carbone, I., Potenzoni, M., Pieri, A. M., Pastizzaro, C. D., … & Licastro, F. (2013). Genetic factors regulating inflammation and DNA methylation associated with prostate cancer. Prostate Cancer and Prostatic Diseases, 16(1), 56.
  69. Illingworth, D. R., Stein, E. A., Mitchel, Y. B., Dujovne, C. A., Frost, P. H., Knopp, R. H., … & Greguski, R. A. (1994). Comparative effects of lovastatin and niacin in primary hypercholesterolemia: A prospective trial. Archives of Internal Medicine, 154(14), 1586-1595.
  70. Imbard, A., Benoist, J. F., & Blom, H. J. (2013). Neural tube defects, folic acid and methylation. International Journal of Environmental Research and Public Health, 10(9), 4352-4389.
  71. Jacobsen, S., Danneskiold-Samsøe, B., & Andersen, R. B. (1991). Oral S-adenosylmethionine in primary fibromyalgia. Double-blind clinical evaluation. Scandinavian Journal of Rheumatology, 20(4), 294-302.
  72. Jacobson, S. W., Carter, R. C., Molteno, C. D., Stanton, M. E., Herbert, J. S., Lindinger, N. M., … & Meintjes, E. M. (2018). Efficacy of maternal choline supplementation during pregnancy in mitigating adverse effects of prenatal alcohol exposure on growth and cognitive function: A randomized, double‐blind, placebo‐controlled clinical trial. Alcoholism: Clinical and Experimental Research, 42(7), 1327-1341.
  73. Jahnen-Dechent, W., & Ketteler, M. (2012). Magnesium basics. Clinical kidney journal, 5(1), i3-i14.
  74. Jannatifar, R., Parivar, K., Roodbari, N. H., & Nasr-Esfahani, M. H. (2019). Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reproductive Biology and Endocrinology, 17(1), 24.
  75. Jiang, X., Bar, H. Y., Yan, J., Jones, S., Brannon, P. M., West, A. A., … & Vermeylen, F. (2013). A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1). The FASEB Journal, 27(3), 1245-1253.
  76. Jin, Z., & Liu, Y. (2018). DNA methylation in human diseases. Genes & Diseases, 5(1), 1-8.
  77. Jurkowska, H., Niewiadomski, J., Hirschberger, L. L., Roman, H. B., Mazor, K. M., Liu, X., … & Stipanuk, M. H. (2016). Downregulation of hepatic betaine: Homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo. Amino acids, 48(3), 665-676.
  78. Kadayifci, F. Z., Zheng, S., & Pan, Y. X. (2018). Molecular mechanisms underlying the link between diet and DNA methylation. International Journal of Molecular Sciences, 19(12), 4055.
  79. Kallionpää, R. A., Uusitalo, E., & Peltonen, J. (2017). Association of Catechol-O-methyltransferase polymorphism Val158Met and mammographic density: A meta-analysis. Gene, 624, 34-42.
  80. Kałużna-Czaplińska, J., Michalska, M., & Rynkowski, J. (2011). Vitamin supplementation reduces the level of homocysteine in the urine of autistic children. Nutrition Research, 31(4), 318-321.
  81. Kei, A., Liberopoulos, E. N., Mikhailidis, D. P., & Elisaf, M. (2013). Comparison of switch to the highest dose of rosuvastatin vs. add‐on nicotinic acid vs. add‐on fenofibrate for mixed dyslipidaemia. International Journal of Clinical Practice, 67(5), 412-419.
  82. Kim, J., Lee, E. Y., Koh, E. M., Cha, H. S., Yoo, B., Lee, C. K., … & Song, Y. W. (2009). Comparative clinical trial of S-adenosylmethionine versus nabumetone for the treatment of knee osteoarthritis: An 8-week, multicenter, randomized, double-blind, double-dummy, Phase IV study in Korean patients. Clinical Therapeutics, 31(12), 2860-2872.
  83. König, B. (1987). A long-term (two years) clinical trial with S-adenosylmethionine for the treatment of osteoarthritis. The American Journal of Medicine, 83(5), 89-94.
  84. Koo, H. S., Lee, H. S., & Hong, Y. M. (2008). Methylenetetrahydrofolate reductase TT genotype as a predictor of cardiovascular risk in hypertensive adolescents. Pediatric Cardiology, 29(1), 136-141.
  85. Kume, A., Kurotani, K., Sato, M., Ejima, Y., Pham, N. M., Nanri, A., … & Mizoue, T. (2013). Polyunsaturated fatty acids in serum and homocysteine concentrations in Japanese men and women: A cross-sectional study. Nutrition & Metabolism, 10(1), 41.
  86. Lai, G., Chen, D., Guo, Y., Tang, X., Shuai, O., Yong, T., … & Yang, B. B. (2019). Alcohol extracts from Ganoderma lucidum delay the progress of Alzheimer’s disease by regulating DNA methylation in rodents. Frontiers in Pharmacology, 10, 272.
  87. Lan, X., Dang, S. N., Zhao, Y. L., & Yan, H. (2016). Meta-analysis on effect of combined supplementation of folic acid, vitamin B12 and B6 on risk of cardio-cerebrovascular diseases in randomized control trials. Chinese Journal of Epidemiology, 37(7).
  88. Lee, W. J., & Zhu, B. T. (2005). Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 27(2), 269-277.
  89. Li, F., Feng, Q., Lee, C., Wang, S., Pelleymounter, L. L., Moon, I., … & Weinshilboum, R. M. (2008). Human betaine-homocysteine methyltransferase (BHMT) and BHMT2: Common gene sequence variation and functional characterization. Molecular Genetics and Metabolism, 94(3), 326-335.
  90. Li, P., Zhou, Q., & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins. Journal of Biotechnology, 234, 66-70.
  91. Li, Y., Huang, T., Zheng, Y., Muka, T., Troup, J., & Hu, F. B. (2016). Folic acid supplementation and the risk of cardiovascular diseases: A meta‐analysis of randomized controlled trials. Journal of the American Heart Association, 5(8), e003768.
  92. Li, Y., Wang, K., Zhang, P., Huang, J., An, H., Wang, N., … & Tan, Y. (2018). Quantitative DNA methylation analysis of DLGAP2 gene using pyrosequencing in schizophrenia with tardive dyskinesia: A linear mixed model approach. Scientific Reports, 8(1), 17466.
  93. Lim, U., & Cassano, P. A. (2002). Homocysteine and blood pressure in the third national health and nutrition examination survey, 1988–1994. American journal of epidemiology, 156(12), 1105-1113.
  94. Long, Y., & Nie, J. (2016). Homocysteine in renal injury. Kidney Diseases, 2(2), 80-87.
  95. Lord, R. S., & Bralley, J. A. (2008). Clinical applications of urinary organic acids. Part I: Detoxification markers. Altern Med Rev, 13(3), 205-215.
  96. Lubinsky, M. (2018). An epigenetic association of malformations, adverse reproductive outcomes, and fetal origins hypothesis related effects. Journal of Assisted Reproduction and Genetics, 35(6), 953-964.
  97. MacCagno, A., Di Giorgio, E. E., Caston, O. L., & Sagasta, C. L. (1987). Double-blind controlled clinical trial of oral S-adenosylmethionine versus piroxicam in knee osteoarthritis. The American Journal of Medicine, 83(5), 72-77.
  98. Mahmoud, A. M., & Ali, M. M. (2019). Methyl donor micronutrients that modify DNA methylation and cancer outcome. Nutrients, 11(3), 608.
  99. Mandal, C., Halder, D., Jung, K. H., & Chai, Y. G. (2017). Gestational alcohol exposure altered DNA methylation status in the developing fetus. International Journal of Molecular Sciences, 18(7), 1386.
  100. Manns, B., Hyndman, E., Burgess, E., Parsons, H., Schaefer, J., Snyder, F., & Scott-Douglas, N. (2001). Oral vitamin B12 and high-dose folic acid in hemodialysis patients with hyper-homocyst (e) inemia. Kidney International, 59(3), 1103-1109
  101. Markham, G. D., & Pajares, M. A. (2009). Structure-function relationships in methionine adenosyltransferases. Cellular and Molecular Life Sciences, 66(4), 636-648.
  102. Mato, J. M., Martínez-Chantar, M. L., & Lu, S. C. (2015). S-adenosylmethionine metabolism and liver disease. Annals of Hepatology, 12(2), 183-189.
  103. Mayer, O., Šimon, J., Rosolová, H., Hromádka, M., Šubrt, I., & Vobrubová, I. (2002). The effects of folate supplementation on some coagulation parameters and oxidative status surrogates. European Journal of Clinical Pharmacology, 58(1), 1-5.
  104. McKinley, M. C., McNulty, H., McPartlin, J., Strain, J. J., Pentieva, K., Ward, M., … & Scott, J. M. (2001). Low-dose vitamin B-6 effectively lowers fasting plasma homocysteine in healthy elderly persons who are folate and riboflavin replete. The American Journal of Clinical Nutrition, 73(4), 759-764.
  105. McMahon, K. W., Karunasena, E., & Ahuja, N. (2017). The roles of DNA methylation in the stages of cancer. Cancer journal (Sudbury, Mass.), 23(5), 257-261.
  106. McNulty, H., Dowey, L. R. C., Strain, J. J., Dunne, A., Ward, M., Molloy, A. M., … & Scott, J. M. (2006). Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C→ T polymorphism. Circulation, 113(1), 74-80.
  107. McRae, M. P. (2009). High-dose folic acid supplementation effects on endothelial function and blood pressure in hypertensive patients: A meta-analysis of randomized controlled clinical trials. Journal of Chiropractic Medicine, 8(1), 15-24.
  108. McRae, M. P. (2013). Betaine supplementation decreases plasma homocysteine in healthy adult participants: A meta-analysis. Journal of Chiropractic Medicine, 12(1), 20-25.
  109. Meininger, V., Flamier, A., Phan, T., Ferris, O., Uzan, A., & Lefur, G. (1982). L-methionine treatment of Parkinson’s disease: Preliminary results. Revue Neurologique, 138(4), 297-303.
  110. Melnyk, S., Fuchs, G. J., Schulz, E., Lopez, M., Kahler, S. G., Fussell, J. J., … & Gaylor, D. W. (2012). Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. Journal of Autism and Developmental Disorders, 42(3), 367-377.
  111. Minich, D. M., & Brown, B. I. (2019). A review of dietary (phyto) nutrients for glutathione support. Nutrients, 11(9), 2073.
  112. Miranda-Duarte, A. (2018). DNA methylation in osteoarthritis: Current status and therapeutic implications. The Open Rheumatology Journal, 12, 37-49.
  113. Miranda-Massari, J., Gonzalez, M., Jimenez, F., Allende-Vigo, M., & Duconge, J. (2011). Metabolic correction in the management of diabetic peripheral neuropathy: Improving clinical results beyond symptom control. Current Clinical Pharmacology, 6(4), 260-273.
  114. Mocellin, S., Briarava, M., & Pilati, P. (2017). Vitamin B6 and cancer risk: A field synopsis and meta-analysis. JNCI: Journal of the National Cancer Institute, 109(3), 1-9.
  115. Morris, A. A., Kožich, V., Santra, S., Andria, G., Ben-Omran, T. I., Chakrapani, A. B., … & Janssen, M. C. (2017). Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. Journal of Inherited Metabolic Disease, 40(1), 49-74.
  116. Morris, M. C., Evans, D. A., Bienias, J. L., Scherr, P. A., Tangney, C. C., Hebert, L. E., … & Aggarwal, N. (2004). Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. Journal of Neurology, Neurosurgery & Psychiatry, 75(8), 1093-1099.
  117. Mosharov, E., Cranford, M. R., & Banerjee, R. (2000). The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 39(42), 13005-13011.
  118. Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Frydecka, D., & Misiak, B. (2014). Homocysteine levels in schizophrenia and affective disorders—focus on cognition. Frontiers in Behavioral Neuroscience, 8, 343.
  119. Müller-Fassbender, H. (1987). Double-blind clinical trial of S-adenosylmethionine versus ibuprofen in the treatment of osteoarthritis. The American Journal of Medicine, 83(5), 81-83.
  120. Murray, L. K., & Jadavji, N. M. (2019). The role of one-carbon metabolism and homocysteine in Parkinson’s disease onset, pathology and mechanisms. Nutrition Research Reviews, 32(2), 218-230.
  121. Najm, W. I., Reinsch, S., Hoehler, F., Tobis, J. S., & Harvey, P. W. (2004). S-adenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: a double-blind cross-over trial.[ISRCTN36233495]. BMC Musculoskeletal Disorders, 5(1), 6.
  122. National Institutes of Health. (2019). Choline: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Choline-HealthProfessional/
  123. National Institutes of Health. (2019). Folate: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Folate-HealthProfessional/.
  124. National Institutes of Health. (2019). Iron: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Iron-HealthProfessional/.
  125. National Institutes of Health. (2019). Magnesium: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Magnesium-HealthProfessional/
  126. National Institutes of Health. (2019). Niacin: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Niacin-HealthProfessional/
  127. National Institutes of Health. (2019). Omega-3 Fatty Acids: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/
  128. National Institutes of Health. (2019). Potassium: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Potassium-HealthProfessional/
  129. National Institutes of Health. (2019). Riboflavin: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Riboflavin-HealthProfessional/.
  130. National Institutes of Health. (2019). Vitamin B6: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/
  131. National Institutes of Health. (2019). Vitamin B12: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/
  132. National Institutes of Health. (2019). Vitamin C: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
  133. National Institutes of Health. (2019). Zinc: Fact sheet for health professionals. Retrieved from https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/
  134. Navarro-Perán, E., Cabezas-Herrera, J., García-Cánovas, F., Durrant, M. C., Thorneley, R. N., & Rodríguez-López, J. N. (2005). The antifolate activity of tea catechins. Cancer Research, 65(6), 2059-2064.
  135. Ng, C. F., Lee, C. P., Ho, A. L., & Lee, V. W. (2011). Effect of niacin on erectile function in men suffering erectile dysfunction and dyslipidemia. The Journal of Sexual Medicine, 8(10), 2883-2893.
  136. Obeid, R., & Herrmann, W. (2009). Homocysteine and lipids: S-adenosyl methionine as a key intermediate. FEBS letters, 583(8), 1215-1225.
  137. Obersby, D., Chappell, D., Tsiami, A. A., & Dunnett, A. (2015). Efficacy of methylcobalamin to normalise elevated homocysteine of vitamin B12 deficient vegetarians: A double blind placebo control study. Current Research in Nutrition and Food Science, 3(3), 187-196.
  138. Okada, H., Moriwaki, K., Kanno, Y., Sugahara, S., Nakamoto, H., Yoshizawa, M., & Suzuki, H. (2000). Vitamin B6 supplementation can improve peripheral polyneuropathy in patients with chronic renal failure on high‐flux haemodialysis and human recombinant erythropoietin. Nephrology Dialysis Transplantation, 15(9), 1410-1413.
  139. Okura, T., Miyoshi, K. I., Irita, J., Enomoto, D., Nagao, T., Kukida, M., … & Higaki, J. (2014). Hyperhomocysteinemia is one of the risk factors associated with cerebrovascular stiffness in hypertensive patients, especially elderly males. Scientific Reports, 4, 5663.
  140. Ooi, S. L., Green, R., & Pak, S. C. (2018). N-acetylcysteine for the treatment of psychiatric disorders: A review of current evidence. BioMed Research International, 2018.
  141. Pan, J. X., Tan, Y. J., Wang, F. F., Hou, N. N., Xiang, Y. Q., Zhang, J. Y., … & Sheng, J. Z. (2018). Aberrant expression and DNA methylation of lipid metabolism genes in PCOS: A new insight into its pathogenesis. Clinical Epigenetics, 10(1), 6.
  142. Poirier, L. A., Wise, C. K., Delongchamp, R. R., & Sinha, R. (2001). Blood determinations of S-adenosylmethionine, S-adenosylhomocysteine, and homocysteine: Correlations with diet. Cancer Epidemiology and Prevention Biomarkers, 10(6), 649-655.
  143. Puyo, S., Houédé, N., Robert, J., Richaud, P., & Pourquier, P. (2012). Oxaliplatin as an alternative for the treatment of high grade prostate cancers. Identification of serine hydroxymethyl transferases (SHMT) as selective biomarkers of oxaliplatin sensitivity via the modulation of DNA methylation. AARC, 72(8)
  144. Qin, X., Huo, Y., Xie, D., Hou, F., Xu, X., & Wang, X. (2013). Homocysteine-lowering therapy with folic acid is effective in cardiovascular disease prevention in patients with kidney disease: A meta-analysis of randomized controlled trials. Clinical Nutrition, 32(5), 722-727.
  145. Qin, X., Xu, M., Zhang, Y., Li, J., Xu, X., Wang, X., … & Huo, Y. (2012). Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials. Atherosclerosis, 222(2), 307-313.
  146. Qing, X., Shi, D., Lv, X., Wang, B., Chen, S., & Shao, Z. (2019). Prognostic significance of 8-hydroxy-2′-deoxyguanosine in solid tumors: A meta-analysis. BMC Cancer, 19(1), 997.
  147. Qu, Y. Y., Zhou, S. X., Zhang, X., Zhao, R., Gu, C. Y., Chang, K., … & Shi, G. H. (2016). Functional variants of the 5-methyltetrahydrofolate-homocysteine methyltransferase gene significantly increase susceptibility to prostate cancer: Results from an ethnic Han Chinese population. Scientific Reports, 6, 36264.
  148. Rampersaud, G. C., Kauwell, G. P., Hutson, A. D., Cerda, J. J., & Bailey, L. B. (2000). Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. The American Journal of cCinicalNnutrition, 72(4), 998-1003.
  149. Ravera, M., Viazzi, F., Berruti, V., Leoncini, G., Zagami, P., Bezante, G. P., … & Deferrari, G. (2001). 5, 10-Methylenetetrahydrofolate reductase polymorphism and early organ damage in primary hypertension. American Journal of Hypertension, 14(4), 371-376.
  150. Roberts, E., Carter, B., & Young, A. H. (2018). Caveat emptor: Folate in unipolar depressive illness, a systematic review and meta-analysis. Journal of Psychopharmacology, 32(4), 377-384.
  151. Roffman, J. L., Petruzzi, L. J., Tanner, A. S., Brown, H. E., Eryilmaz, H., Ho, N. F., … & Smoller, J. W. (2018). Biochemical, physiological and clinical effects of l-methylfolate in schizophrenia: A randomized controlled trial. Molecular Psychiatry, 23(2), 316.
  152. Rossi, M., Amaretti, A., & Raimondi, S. (2011). Folate production by probiotic bacteria. Nutrients, 3(1), 118-134.
  153. Safarinejad, M. R., & Safarinejad, S. (2009). Efficacy of selenium and/or N-acetyl-cysteine for improving semen parameters in infertile men: A double-blind, placebo controlled, randomized study. The Journal of urology, 181(2), 741-751.
  154. Sahebkar, A., Reiner, Ž., Simental-Mendía, L. E., Ferretti, G., & Cicero, A. F. (2016). Effect of extended-release niacin on plasma lipoprotein (a) levels: A systematic review and meta-analysis of randomized placebo-controlled trials. Metabolism, 65(11), 1664-1678.
  155. Sahebkar, A. (2014). Effect of niacin on endothelial function: A systematic review and meta-analysis of randomized controlled trials. Vascular Medicine, 19(1), 54-66.
  156. Sakuma, K., Matsunaga, S., Nomura, I., Okuya, M., Kishi, T., & Iwata, N. (2018). Folic acid/methylfolate for the treatment of psychopathology in schizophrenia: A systematic review and meta-analysis. Psychopharmacology, 235(8), 2303-2314.
  157. Sánchez-del-Campo, L., Sáez-Ayala, M., Chazarra, S., Cabezas-Herrera, J., & Rodríguez-López, J. N. (2009). Binding of natural and synthetic polyphenols to human dihydrofolate reductase. International Journal of Molecular Sciences, 10(12), 5398-5410.
  158. Shaw, G. M., Velie, E. M., & Schaffer, D. M. (1997). Is dietary intake of methionine associated with a reduction in risk for neural tube defect‐affected pregnancies?. Teratology, 56(5), 295-299.
  159. Shenoy, V., Mehendale, V., Prabhu, K., Shetty, R., & Rao, P. (2014). Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian Journal of Clinical Biochemistry, 29(3), 339-344.
  160. Shoob, H. D., Sargent, R. G., Thompson, S. J., Best, R. G., Drane, J. W., & Tocharoen, A. (2001). Dietary methionine is involved in the etiology of neural tube defect–affected pregnancies in humans. The Journal of Nutrition, 131(10), 2653-2658.
  161. Singh, B. N., Shankar, S., & Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807-1821.
  162. Soeken, K. L., Lee, W. L., Bausell, R. B., Agelli, M., & Berman, B. M. (2002). Safety and efficacy of S-adenosylmethionine (SAMe) for osteoarthritis. J Fam Pract, 51(5), 425-30.
  163. Stabler, S. P., Korson, M., Jethva, R., Allen, R. H., Kraus, J. P., Spector, E. B., … & Mudd, S. H. (2013). Metabolic profiling of total homocysteine and related compounds in hyperhomocysteinemia: utility and limitations in diagnosing the cause of puzzling thrombophilia in a family. In JIMD Reports-Volume 11 (pp. 149-163). Springer, Berlin, Heidelberg.
  164. Strous, R. D., Ritsner, M. S., Adler, S., Ratner, Y., Maayan, R., Kotler, M., … & Weizman, A. (2009). Improvement of aggressive behavior and quality of life impairment following S-adenosyl-methionine (SAM-e) augmentation in schizophrenia. European Neuropsychopharmacology, 19(1), 14-22.
  165. Strozzi, G. P., & Mogna, L. (2008). Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. Journal of Clinical Gastroenterology, 42, S179-S184.
  166. Sun, J., Wen, S., Zhou, J., & Ding, S. (2017). Association between malnutrition and hyperhomocysteine in Alzheimer’s disease patients and diet intervention of betaine. Journal of Clinical Laboratory Analysis, 31(5), e22090.
  167. Sun, S., Li, X., Ren, A., Du, M., Du, H., Shu, Y., … & Wang, W. (2016). Choline and betaine consumption lowers cancer risk: A meta-analysis of epidemiologic studies. Scientific Reports, 6, 35547.
  168. Sun, Y., Lai, M., & Lu, C. (2005). Effectiveness of vitamin B12 on diabetic neuropathy: systematic review of clinical controlled trials. Acta Neurologica Taiwanica, 14, 48-54.
  169. Sunder-Plassmann, G., Fodinger, M., Buchmayer, H., Papagiannopoulos, M., Wojcik, J., Kletzmayr, J., … & Auinger, M. (2000). Effect of high dose folic acid therapy on hyperhomocysteinemia in hemodialysis patients: Results of the Vienna multicenter study. Journal of the American Society of Nephrology, 11(6), 1106-1116.
  170. Taki, K., Takayama, F., & Niwa, T. (2005). Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. Journal of Renal Nutrition, 15J(1), 77-80.
  171. Talaei, A., Siavash, M., Majidi, H., & Chehrei, A. (2009). Vitamin B12 may be more effective than nortriptyline in improving painful diabetic neuropathy. International Journal of Food Sciences and Nutrition, 60(5), 71-76.
  172. Tavares, N. R., Moreira, P. A., & Amaral, T. F. (2009). Riboflavin supplementation and biomarkers of cardiovascular disease in the elderly. JNHA-The Journal of Nutrition, Health and Aging, 13(5), 441-446.
  173. Tavoni, A., Vitali, C., Bombardieri, S., & Pasero, G. (1987). Evaluation of S-adenosylmethionine in primary fibromyalgia: A double-blind crossover study. The American Journal of Medicine, 83(5), 107-110.
  174. Taylor, M. J., Carney, S. M., Geddes, J., & Goodwin, G. (2003). Folate for depressive disorders. Cochrane database of systematic reviews, (2).
  175. Tepel, M., Van Der Giet, M., Statz, M., Jankowski, J., & Zidek, W. (2003). The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: A randomized, controlled trial. Circulation, 107(7), 992-995.
  176. Thaha, M., Yogiantoro, M., & Tomino, Y. (2006). Intravenous N-acetylcysteine during haemodialysis reduces the plasma concentration of homocysteine in patients with end-stage renal disease. Clinical Drug Investigation, 26(4), 195-202.
  177. Thakker, D., Raval, A., Patel, I., & Walia, R. (2015). N-acetylcysteine for polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled clinical trials. Obstetrics and Gynecology International, 2015.
  178. Thambyrajah, J., Landray, M. J., McGlynn, F. J., Jones, H. J., Wheeler, D. C., & Townend, J. N. (2000). Does folic acid decrease plasma homocysteine and improve endothelial function in patients with predialysis renal failure?. Circulation, 102(8), 871-875.
  179. Thompson, D. F., & Saluja, H. S. (2017). Prophylaxis of migraine headaches with riboflavin: A systematic review. Journal of Clinical Pharmacy and Therapeutics, 42(4), 394-403.
  180. Tian, T., Yang, K. Q., Cui, J. G., Zhou, L. L., & Zhou, X. L. (2017). Folic acid supplementation for stroke prevention in patients with cardiovascular disease. The American Journal of the Medical Sciences, 354(4), 379-387.
  181. Traube, F. R., & Carell, T. (2017). The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biology, 14(9), 1099-1107.
  182. Ueland, P. M. (2011). Choline and betaine in health and disease. Journal of Inherited Metabolic Disease, 34(1), 3-15.
  183. Vacek, J. L., Dittmeier, G., Chiarelli, T., White, J., & Bell, H. H. (1995). Comparison of lovastatin (20 mg) and nicotinic acid (1.2 g) with either drug alone for type II hyperlipoproteinemia. The American Journal of Cardiology, 76(3), 182-184.
  184. Valentini, L., Pinto, A., Bourdel-Marchasson, I., Ostan, R., Brigidi, P., Turroni, S., … & Leoncini, E. (2015). Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota–The “RISTOMED project”: Randomized controlled trial in healthy older people. Clinical Nutrition, 34(4), 593-602.
  185. Van der Griend, R., Biesma, D. H., Haas, F. J. L. M., Faber, J. A. J., Duran, M., Meuwissen, O. T., & Banga, J. D. (2000). The effect of different treatment regimens in reducing fasting and postmethionine‐load homocysteine concentrations. Journal of Internal Medicine, 248(3), 223-229.
  186. Van der Griend, R., Haas, F. J., Biesma, D. H., Duran, M., Meuwissen, O. J. T., & Banga, J. D. (1999). Combination of low-dose folic acid and pyridoxine for treatment of hyperhomocysteinaemia in patients with premature arterial disease and their relatives. Atherosclerosis, 143(1), 177-183.
  187. Van der Kuy, P. H., Merkus, F. W. H. M., Lohman, J. J. H. M., Berg, J. T., & Hooymans, P. M. (2002). Hydroxocobalamin, a nitric oxide scavenger, in the prophylaxis of migraine: An open, pilot study. Cephalalgia, 22(7), 513-519.
  188. van der Put, N. M., Gabreëls, F., Stevens, E. M., Smeitink, J. A., Trijbels, F. J., Eskes, T. K., … & Blom, H. J. (1998). A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects?. The American Journal of Human Genetics, 62(5), 1044-1051.
  189. Vasdev, S., Singal, P., & Gill, V. (2009). The antihypertensive effect of cysteine. International Journal of Angiology, 18(1), 7-21.
  190. vel Szic, K. S., Ndlovu, M. N., Haegeman, G., & Berghe, W. V. (2010). Nature or nurture: Let food be your epigenetic medicine in chronic inflammatory disorders. Biochemical Pharmacology, 80(12), 1816-1832.
  191. Voutilainen, S., Morrow, J. D., Roberts, L. J., Alfthan, G., Alho, H., Nyyssönen, K., & Salonen, J. T. (1999). Enhanced in vivo lipid peroxidation at elevated plasma total homocysteine levels. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(5), 1263-1266.
  192. Wald, D. S., Bishop, L., Wald, N. J., Law, M., Hennessy, E., Weir, D., … & Scott, J. (2001). Randomized trial of folic acid supplementation and serum homocysteine levels. Archives of Internal Medicine, 161(5), 695-700.
  193. Wallace, J. M., McCormack, J. M., McNulty, H., Walsh, P. M., Robson, P. J., Bonham, M. P., … & Ueland, P. M. (2012). Choline supplementation and measures of choline and betaine status: A randomised, controlled trial in postmenopausal women. British Journal of Nutrition, 108(7), 1264-1271.
  194. Wang, P., Heber, D., & Henning, S. M. (2012). Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food & Function, 3(6), 635-642.
  195. Wilson, C. P., McNulty, H., Ward, M., Strain, J. J., Trouton, T. G., Hoeft, B. A., … & Scott, J. M. (2013). Blood pressure in treated hypertensive individuals with the MTHFR 677TT genotype is responsive to intervention with riboflavin: Findings of a targeted randomized trial. Hypertension, 61(6), 1302-1308.
  196. Wilson, C. P., Ward, M., McNulty, H., Strain, J. J., Trouton, T. G., Horigan, G., … & Scott, J. M. (2012). Riboflavin offers a targeted strategy for managing hypertension in patients with the MTHFR 677TT genotype: A 4-y follow-up. The American Journal of Clinical Nutrition, 95(3), 766-772.
  197. Wójcik, O. P., Koenig, K. L., Zeleniuch-Jacquotte, A., Costa, M., & Chen, Y. (2010). The potential protective effects of taurine on coronary heart disease. Atherosclerosis, 208(1), 19-25.
  198. Woo, K. S., Chook, P., Chan, L. L., Cheung, A. S., Fung, W. H., Qiao, M., … & Celermajer, D. S. (2002). Long-term improvement in homocysteine levels and arterial endothelial function after 1-year folic acid supplementation. The American Journal of Medicine, 112(7), 535-539.
  199. Wozniak, J. R., Fuglestad, A. J., Eckerle, J. K., Fink, B. A., Hoecker, H. L., Boys, C. J., … & Zeisel, S. H. (2015). Choline supplementation in children with fetal alcohol spectrum disorders: A randomized, double-blind, placebo-controlled trial. The American Journal of Clinical Nutrition, 102(5), 1113-1125.
  200. Wu, H., Wang, B., Ban, Q., Chen, L., Yan, D., Yu, Y., … & Zhang, Y. (2018). Association of total homocysteine with blood pressure in a general population of Chinese adults: A cross-sectional study in Jiangsu province, China. BMJ Open, 8(6), e021103.
  201. Wu, W., Kang, S., & Zhang, D. (2013). Association of vitamin B 6, vitamin B 12 and methionine with risk of breast cancer: A dose–response meta-analysis. British Journal of Cancer, 109(7), 1926.
  202. Xiao, Y., Su, X., Huang, W., Zhang, J., Peng, C., Huang, H., … & Ling, W. (2015). Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. The international Journal of Biochemistry & Cell Biology, 67, 158-166.
  203. Yajnik, C. S., Lubree, H. G., Thuse, N. V., Ramdas, L. V., Deshpande, S. S., Deshpande, V. U., … & Joshi, N. P. (2007). Oral vitamin B12 supplementation reduces plasma total homocysteine concentration in women in India. Asia Pac J Clin Nutr, 16(1), 103-109.
  204. Yilmaz, H., Sahin, S., Sayar, N., Tangurek, B., Yilmaz, M., Nurkalem, Z., … & Bolca, O. (2007). Effects of folic acid and N-acetylcysteine on plasma homocysteine levels and endothelial function in patients with coronary artery disease. Acta Cardiologica, 62(6), 579-585.
  205. Yokoyama, A. S., Rutledge, J. C., & Medici, V. (2017). DNA methylation alterations in Alzheimer’s disease. Environmental epigenetics, 3(2), 1-11.
  206. Zhang, Y., Hodgson, N. W., Trivedi, M. S., Abdolmaleky, H. M., Fournier, M., Cuenod, M., … & Deth, R. C. (2016). Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One, 11(1), e0146797.
  207. Zhang, Y., Lu, L., Victor, D. W., Xin, Y., & Xuan, S. (2016). Ursodeoxycholic acid and S-adenosylmethionine for the treatment of Iitrahepatic cholestasis of pregnancy: A meta-analysis. Hepatitis Monthly, 16(8), e38558.
  208. Zhao, M., Wu, G., Li, Y., Wang, X., Hou, F. F., Xu, X., … & Cai, Y. (2017). Meta-analysis of folic acid efficacy trials in stroke prevention: Insight into effect modifiers. Neurology, 88(19), 1830-1838.
  209. Zhou, F., Gao, B., Wang, X., & Li, J. (2014). Meta-analysis of ursodeoxycholic acid and S-adenosylmethionine for improving the outcomes of intrahepatic cholestasis of pregnancy. Chinese Journal of Hepatology, 22(4), 299-304.
  210. Zhou, Z. Y., Wan, X. Y., & Cao, J. W. (2013). Dietary methionine intake and risk of incident colorectal cancer: A meta-analysis of 8 prospective studies involving 431,029 participants. PLoS One, 8(12), e83588.