The healthiest cookies you’ll choose today

Our website uses cookies to collect useful information that lets us and our partners support basic functionality, analyze visitor traffic, deliver a better user experience, and provide ads tailored to your interests. Agreeing to the use of cookies is your choice. Learn more

Decline cookies Accept cookies
Skip to content
Fullscript leaf logo Sign in
Fullscript logo
Fullscript leaf logo
  • Our platform
    • Practitioner software
    • Pricing
    • Integrations
    • Patients on Fullscript
    • Book a demo
  • Learn
    • Spotlight
    • Protocols
    • Wellness blog
    • Practice resources
    • Webinars
    • Ingredient library
    • Practicing virtually
  • Support
    • Practitioner support
    • Patient help
    • Contact us
    • Or chat with us
Sign in Create account
Conditions
—

The HPA Axis and Stress Management: An Introduction

January 11, 2023
Fact checked
Written by Kayla Robinson, BKin, RHN
Medically reviewed by
Dr. Alex Keller, ND
  1. Wellness blog
  2. The HPA Axis and Stress Management: An Introduc...

Stress can come in many forms; whether physical, such as injury and illness, or emotional, the body perceives stress as a threat to homeostasis. Homeostasis refers to the body’s ability to continuously adjust and respond to internal and external stimuli, including acute and chronic stress. The goal of homeostasis is to establish and maintain a constant state of balance within the body that is necessary for proper functioning and survival. (1)(5) 

Read on to learn the basics about the hypothalamic pituitary adrenal axis (HPA axis) and how the body responds to stress. 

How the body responds to stress via the HPA axis

In order to maintain homeostasis, a number of mechanisms exist to help the body respond to stressors. Collectively, these mechanisms are known as the stress response and involve the collaboration of multiple body systems including the endocrine system, and immune system, and central nervous system. (4)

One of the primary actions of the stress response involves the regulation of cortisol response, the primary glucocorticoid in humans released in response to stress. During a normal response to acute stress, cortisol levels rise and decline very quickly following a stressful event. (5) The mechanism responsible for this response is known as the HPA axis. 

In order to understand and treat stress-related health conditions, it is first important to understand the mechanisms by which the body regulates stress, including the HPA axis. 

Treat, prescribe, and dispense supplements to support adrenal health

Try Adrenal Support Protocol

What is the hypothalamic pituitary adrenal axis?

As the name implies, the hypothalamic-pituitary-adrenal axis, commonly known as the HPA axis, involves the hypothalamus, the anterior lobe of the pituitary gland, and the adrenal glands. An integral component of the stress response, the HPA axis is a cooperation of three key endocrine glands that helps the body regulate cortisol levels and maintain homeostasis. It functions through a network of positive and negative feedback regulated by the neuroendocrine system. (5) 

While the mechanism of the HPA axis does not vary between individuals, individual differences in HPA activity have been attributed to several factors. These include genetic factors, such as DNA variation in the genes that regulate neurotransmitter activity, early life environment, such as exposure to maternal stress during gestation and stressful early-childhood events, and current exposure to acute stress. (5)

hpa axis diagram
The HPA axis involves the hypothalamus, pituitary gland, and adrenal glands.

Responding to stress

When the body is exposed to acute stress, brain signaling systems, such as neurotransmitters, trigger the activation of the HPA axis in the paraventricular nucleus (PVN) of the hypothalamus. (5) Once activated, the PVN releases arginine vasopressin (AVP) and corticotropin-releasing hormone (CRH), also known as corticotropin-releasing factor (CRF). CRH, the primary regulator of the HPA axis, is released and targets CRH receptors in the anterior pituitary gland, which, in turn, stimulates the production and secretion of adrenocorticotropic hormone (ACTH) into general circulation. (4) ACTH then binds to receptors on the adrenal cortex and stimulates the synthesis and release of glucocorticoids, specifically cortisol, from the zona fasciculata of the adrenal glands. (5) 

The stress hormone, cortisol induces a number of metabolic effects in order to restore homeostasis, including activating enzymes involved in gluconeogenesis and inhibiting the uptake of glucose in peripheral tissues, ultimately increasing blood glucose concentration. (3) In addition, glucocorticoids exhibit a stimulatory effect on inflammation, which may be attributed to enhanced expression of cytokine receptors, including those for pro-inflammatory cytokines TNFα, IL-1, and IL-6. (7) 

Furthermore,  elevated cortisol levels as a result of stress have been shown to affect thyroid hormone levels, specifically thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). One study examining the relationship between TSH and cortisol in 54 healthy men and women noted an apparent positive correlation between the two hormones. (6) Another study found that cortisol levels were inversely related to decreases in thyroid hormones following exhaustive exercise. (2)

hpa axis
When exposed to acute stress, brain signaling systems trigger HPA axis function. (5)

Returning to homeostasis

The stress hormone, cortisol,  is secreted and levels in the blood reach a certain concentration, a negative-feedback mechanism is triggered. This mechanism signals the hypothalamus and anterior pituitary gland to inhibit HPA axis activity and the synthesis of CRH and ACTH, respectively. (4)(5) 

There are two types of receptors responsible for detecting cortisol levels in the blood and initiating this negative-feedback mechanism: 

  • Mineralocorticoid (type-I)
  • Glucocorticoid (type-II) receptors

While both of these receptors bind to cortisol, they have different functions. As cortisol has a high affinity to mineralocorticoid receptors (MRs), these receptors help to maintain normal daily cortisol fluctuations in the blood. Glucocorticoid receptors (GRs) are the receptors responsible for regulating cortisol levels following a stressful event. When cortisol levels are high, beyond normal daily levels, GRs are activated and signal to the hypothalamus and anterior pituitary  gland to stop secreting CFH and ACTH. (4)(5) While they are found in a number of regions of the brain, GRs in high concentrations located in the PVN and hippocampus appear the be the primary areas for glucocorticoid feedback inhibition of the HPA axis. (4) 

This feedback loop protects the body from the prolonged release of cortisol via the HPA axis, ensuring the return to homeostasis.  

The bottom line

Hypothalamic pituitary adrenal axis, which involves the hypothalamus, anterior lobe of the pituitary gland, and the adrenal glands, is the body’s stress response system and is responsible for regulating cortisol levels and maintaining homeostasis. If you’re a patient, speak to your integrative healthcare practitioner about recommendations for supporting the HPA axis.

Quality supplement plans in less than a minute

Try Fullscript
References
  1. Damasio, A. R., & Damasio, H. (2016). Exploring the concept of homeostasis and considering its implications for economics. Journal of Economic Behavior & Organization, 126, 125-129. 
  2. Hackney, A.C., & Dobridge, J.D. (2009). Thyroid hormones and the interrelationship of cortisol and prolactin: influence of prolonged, exhaustive exercise. Endokrynologia Polska, 60(4), 252-7. 
  3. Marik, P. E., & Bellomo, R. (2013). Stress hyperglycemia: An essential survival response! Critical Care, 17(2), 305.
  4. Smith, S.M., & Vale, W.W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8(4), 383–395.
  5. Stephens, M. A., & Wand, G. S. (2012). Stress and the HPA axis: Role of glucocorticoids in alcohol dependence. Alcohol Research Current Reviews, 34(4), 468–483.
  6. Walter, K. N., Corwin, E. J., Ulbrecht, J., Demers, L. M., Bennett, J. M., Whetzel, C. A., & Klein, L. (2012). Elevated thyroid stimulating hormone is associated with elevated cortisol in healthy young men and women. Thyroid Research, 5(1), 13.
  7. Yeager, M. P., Guyre, P. M., & Munck, A. U. (2004). Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiologica Scandinavica,48(7), 799-813.
  • Print
  • Email
  • Facebook
  • LinkedIn
  • Twitter
  • Pinterest

Disclaimer

The information in this article is designed for educational purposes only and is not intended to be a substitute for informed medical advice or care. This information should not be used to diagnose or treat any health problems or illnesses without consulting a doctor. Consult with a health care practitioner before relying on any information in this article or on this website.

Cancel reply

Your email address will not be published. Required fields are marked *

Prev Next
Back to main wellness blog page

Get more resources for your practice

Protocols
Practice resources
Ingredient library
Webinars

Share

  • Print
  • Email
  • Facebook
  • LinkedIn
  • Twitter
  • Pinterest

Fullscript content philosophy

At Fullscript, we are committed to curating accurate, and reliable educational content for practitioners and patients alike. Our educational offerings cover a broad range of topics related to integrative medicine, such as supplement ingredients, diet, lifestyle, and health conditions.

Medically reviewed by expert practitioners and our internal Integrative Medical Advisory team, all Fullscript content adheres to the following guidelines:

  1. In order to provide unbiased and transparent education, information is based on a research review and obtained from trustworthy sources, such as peer-reviewed articles and government websites. All medical statements are linked to the original reference and all sources of information are disclosed within the article.
  2. Information about supplements is always based on ingredients. No specific products are mentioned or promoted within educational content.
  3. A strict policy against plagiarism is maintained; all our content is unique, curated by our team of writers and editors at Fullscript. Attribution to individual writers and editors is clearly stated in each article.
  4. Resources for patients are intended to be educational and do not replace the relationship between health practitioners and patients. In all content, we clearly recommend that readers refer back to their healthcare practitioners for all health-related questions.
  5. All content is updated on a regular basis to account for new research and industry trends, and the last update date is listed at the top of every article.
  6. Potential conflicts of interest are clearly disclosed.
Read more
Fullscript logo

We're certified carbon-neutral. It's part of our commitment to helping people get better.

American flag - toggles to show american specific contentUnited States
Canadian flag - toggles to show canada specific contentCanada
Product
  • Practitioner software
  • Integrations
  • Pricing
  • Patients
  • Supplement quality
  • Treatment adherence
  • Catalog
  • Wholesale
Company
  • Spotlight
  • About Fullscript
  • Collective
  • Leadership
  • Culture guide
  • Careers
  • Engineering
  • News
Support
  • Practitioner support
  • Patient help
  • Testimonials
  • General FAQ
  • Patient shipping
  • Wholesale shipping

© Fullscript 2023. All rights reserved.

*These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure, or prevent any disease.

  • Privacy Statement
  • Terms of Service
  • Accessibility Policy
  • Customer Support Policy
  • Acceptable Use Policy
  • California Privacy Notice
Send this to a friend