Influencer Protocol

The Functional Medicine Approach to Immune Support: Virus-Specific Nutraceutical and Botanical Agents


The Fullscript Integrative Medical Advisory team adapted the original version of this template developed by the Institute for Functional Medicine to accommodate quick upload into your Fullscript account. By adding this protocol to your Fullscript template library, you understand and accept that the recommendations in the protocol are for initial guidance and may not be appropriate for every patient.

Note: products included in the protocol are the most commonly recommended by ingredient category and can be modified to the practitioner’s preference.

Upload this template

Ingredient Overview

Ingredient Dosing Benefits
Curcumin 500-1,000 mg, 2x daily
  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
Quercetin Regular: 1,000 mg orally, 2x daily

Phytosome: 500 mg, 2x daily

  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
Zinc 30-60 mg orally daily, in divided doses
  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
N-Acetylcysteine (NAC) 600-900 mg, 2x daily
  • Enhances the immune system
  • Reduces symptoms
Vitamin D 5,000 IU orally, daily
  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
Vitamin A 10,000-25,000 IU, daily
  • Enhances the immune system
  • Reduces symptoms
Vitamin C 1-3 g orally, daily
  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
Melatonin 5-20 mg, taken at bedtime
  • Enhances the immune system
  • Decreases viral growth
Elderberry (Sambucus nigra) 500 mg orally, daily
  • Enhances the immune system
  • Decreases viral growth
Palmitoylethanolamide (PEA) 300 mg orally, 2x daily (prevention); 600-900 mg, 3x daily for 2 weeks (treatment)
  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
Epigallocatechin gallate (EGCG) 4 cups daily (green tea) 225 mg orally, daily (EGCG)
  • Enhances the immune system
  • Decreases viral growth
  • Reduces symptoms
Resveratrol 100-150 mg orally, 2x daily
  • Enhances the immune system
  • Decrease viral growth


Dosing: 500-1,000 mg, 2x daily


  • Curcumin has been shown to reduce inflammation and decrease viral activity
  • Enhances the immune system
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action:

Favorably modulate viral-induced pathological cellular processes:

  • Modulation of NLRP3 inflammasome activation[5],[19],[20],[21]
Curcumin in the Fullscript catalog



  • Regular: 1,000 mg orally, 2x daily
  • Phytosome: 500 mg, 2x daily


  • Quercetin is found in fruits and vegetables and has a wide range of benefits, including decreasing viral growth
  • Enhances the immune system
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action:

Promote viral eradication or inactivation[9]-[13]:

  • Inhibition of viral replication

Favorably modulate viral-induced pathological cellular processes:

  • Modulation of NLRP3 inflammasome activation[5],[14],[15]

Mechanistically promote resolution of collateral damage and restoration of function:

  • Modulation of mast cell stabilization (anti-fibrotic)
Quercetin in the Fullscript catalog


Dosing: 30-60 mg orally daily, in divided doses

  • Zinc acetate, citrate, picolinate, or glycinate orally
  • Zinc gluconate as lozenge


  • A large body of research shows that zinc has strong anti-viral properties against many viruses
  • Enhances the immune system
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action[120]-[127]:

Favorably modulate innate and adaptive immune system

Favorably modulate viral-induced pathological cellular processes, attachment, and replication

Zinc in the Fullscript catalog

N-Acetylcysteine (NAC)

Dosing: 600-900 mg, 2x daily


  • N-acetylcysteine promotes the production of glutathione, a potent antioxidant that supports immune function. It also reduces the severity of the flu
  • Enhances the immune system
  • Reduces symptoms

Viral-Specific Mechanism(s) of action[36]:

Favorably modulate cellular defense and repair mechanisms

NAC in the Fullscript catalog

Vitamin D

Dosing: 5,000 IU orally, daily


  • Vitamin D enhances immune system function, reduces viral growth, and can reduce upper respiratory infections
  • Enhances the immune System
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action[55]-[78]:

Favorably modulate cellular defense and repair mechanisms:

  • Activation of macrophages
  • Stimulation of anti-microbial peptides
  • Modulation of defensins
  • Modulation of TH17 cells

Favorably modulate viral-induced pathological cellular processes:

  • Reduction in cytokine expression
  • Modulation of TGF beta
Vitamin D in the Fullscript catalog

Vitamin A

Dosing: 10,000-25,000 IU, daily


  • Vitamin A is anti-inflammatory, enhances immune function, and supports the lining of the respiratory tract
  • Enhances the immune system
  • Reduces symptoms

Viral-Specific Mechanism(s) of action[95],[96]:

Favorably modulate cellular defense and repair mechanisms:

  • Modulation of T helper cells
  • Modulation of sIgA

Favorably modulate viral-induced pathological cellular processes:

  • Modulation of cytokine production
Vitamin A in the Fullscript catalog

Vitamin C

Dosing: 1-3 g orally, daily


  • Vitamin C contributes to immune defense by supporting various cellular functions of the immune system
  • Enhances the immune system
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action[120]:

Favorably modulate cellular defense and repair mechanisms

Favorably modulate viral-induced pathological cellular processes

Vitamin C in the Fullscript catalog


Dosing: 5-20 mg, taken at bedtime


  • In addition to promoting restful sleep, melatonin has been shown to reduce inflammation
  • Enhances the immune system
  • Decrease viral growth

Viral-Specific Mechanism(s) of action:

Favorably modulate viral-induced pathological cellular processes

  • Modulation of NLRP3 inflammasome activation[83],[84]
Melatonin in the Fullscript catalog

Elderberry (Sambucus nigra)

Dosing: 500 mg orally, daily


  • Elderberry is packed with vitamin C, dietary fiber, and antioxidants. It has been used extensively in the prevention of influenza
  • Enhances the immune system
  • Decrease viral growth

Viral-Specific Mechanism(s) of action[103],[107],[108],[109],[110],[111],[112]:

Favorably modulate cellular defense and repair mechanisms

Favorably modulate viral-induced pathological cellular processes

Elderberry in the Fullscript catalog

Palmitoylethanolamide (PEA)

Dosing: 300 mg orally, 2x daily (prevention); 600-900 mg, 3x daily for 2 weeks (treatment)


  • PEA is a naturally occurring anti-inflammatory agent that has been shown to improve outcomes in acute respiratory disease and influenza
  • Enhances the immune system
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action[115]:

Favorably modulate cellular defense and repair mechanisms

Favorably modulate viral-induced pathological cellular processes

PEA in the Fullscript catalog

Epigallocatechin gallate (EGCG)

Dosing: 4 cups daily (green tea) 225 mg orally, daily (EGCG)


  • In addition to reducing inflammation, green tea enhances the immune system and targets one of the processes involved in viral replication
  • Enhances the immune system
  • Decrease viral growth
  • Reduces symptoms

Viral-Specific Mechanism(s) of action:

Favorably modulate viral-induced pathological cellular processes:

  • Modulation of NLRP3 inflammasome activation[5],[28],[29]
Green tea in the Fullscript catalog


Dosing: 100-150 mg orally, 2x daily


  • Resveratrol, a natural compound found in red grapes, has many beneficial health effects and has been shown in the lab to attack viral-specific agents
  • Enhances the immune system
  • Decrease viral growth

Viral-Specific Mechanism(s) of action:

Favorably modulate viral-induced pathological cellular processes

  • Modulation of NLRP3 inflammasome activation[5]
Resveratrol in the Fullscript catalog


1. Hotchkiss RS, Opal SM. Activating immunity to fight a foe – a new path. N Engl J Med. 2020;382(13):1270-1272. doi:10.1056/NEJMcibr1917242
2. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation: anti-inflammatory strategies.  J Biol Regul Homeost Agents. 2020;34(2):1. doi:10.23812/CONTI-E
3. Ding S, Xu S, Ma Y, Liu G, Jang H, Fang J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules. 2019;9(12):E850. doi:10.3390/biom9120850
4. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50. doi:10.3389/fmicb.2019.00050
5. Tőzsér J, Benkő S. Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1β production. Mediators Inflamm. 2016;2016:5460302.  doi:10.1155/2016/5460302
6. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-1034. doi:10.1016/S0140-6736(20)30628-0
7. Adem S, Eyupoglu V, Sarfraz I, Rasul A, Ali M. Identification of potent main protease (Mpro) inhibitors from natural polyphenols. Preprints. Published online March 23, 2020. doi:10.20944/preprints202003.0333.v1
8. Dostal Z, Modriansky M. The effect of quercetin on microRNA expression: a critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019;163(2):95-106. doi:10.5507/bp.2019.030
9. Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2015;8(1):E6. doi:10.3390/v8010006
10. Kinker B, Comstock AT, Sajjan US. Quercetin: a promising treatment for the common cold. J Anc Dis Prev Rem. 2014;2:2:1000111. doi:10.4172/2329-8731.1000111
11. Somerville VS, Braakhuis AJ, Hopkins WG. Effect of flavonoids on upper respiratory tract infections and immune function: a systematic review and meta-analysis. Adv Nutr. 2016;7(3):488-497. doi:10.3945/an.115.010538
12. Qiu X, Kroeker A, He S, et al. Prophylactic efficacy of quercetin 3-β-O-D-glucoside against Ebola virus infection. Antimicrob Agents Chemother. 2016;60(9):5182-5188. doi:10.1128/AAC.00307-16
13. Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol Sin. 2017;32(6):545-547. doi:10.1007/s12250-017-4057-9
14. Yi YS. Regulatory roles of flavonoids on inflammasome activation during inflammatory responses. Mol Nutr Food Res. 2018;62(13):e1800147. doi:10.1002/mnfr.201800147
15. Sun Y, Liu W, Zhang H, et al. Curcumin prevents osteoarthritis by inhibiting the activation of inflammasome NLRP3. J Interferon Cytokine Res. 2017;37(10):449-455. doi:10.1089/jir.2017.0069
16. Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1). doi:10.1002/mnfr.201700447
17. Ożarowski M, Mikoőajczak Pő, Kujawski R, et al. Pharmacological effect of quercetin in hypertension and its potential application in pregnancy-induced hypertension: review of in vitro, in vivo, and clinical studies. Evid Based Complement Alternat Med. 2018;2018:7421489. doi:10.1155/2018/7421489
18. Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. Published online March 13, 2020. doi:10.20944/preprints202003.0226.v1
19. Yin H, Guo Q, Li X, et al. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J Immunol. 2018;200(8):2835-2846. doi:10.4049/jimmunol.1701495
20. Gong Z, Zhao S, Zhou J, et al. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol Immunol. 2018;104:11-19. doi:10.1016/j.molimm.2018.09.004
21. Zhao J, Wang J, Zhou M, Li M, Li M, Tan H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int Immunopharmacol. 2019;69:213-216. doi:10.1016/j.intimp.2019.01.046
22. Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325-1348. doi:10.1111/bph.13621
23. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003;9(1):161-168. doi:10.1089/107555303321223035
24. Ng QX, Koh SSH, Chan HW, Ho CYX. Clinical use of curcumin in depression: a meta-analysis. J Am Med Dir Assoc. 2017;18(6):503-508. doi:10.1016/j.jamda.2016.12.071
25. Ng QX, Soh AYS, Loke W, Venkatanarayanan N, Lim DY, Yeo WS. A meta-analysis of the clinical use of curcumin for irritable bowel syndrome (IBS). J Clin Med. 2018;7(10):E298. doi:10.3390/jcm7100298
26. Bahramsoltani R, Rahimi R, Farzaei MH. Pharmacokinetic interactions of curcuminoids with conventional drugs: a review. J Ethnopharmacol. 2017;209:1-12. doi:10.1016/j.jep.2017.07.022
27. Xu J, Qiu JC, Ji X, et al. Potential pharmacokinetic herb-drug interactions: have we overlooked the importance of human carboxylesterases 1 and 2? Curr Drug Metab. 2019;20(2):130-137. doi:10.2174/1389200219666180330124050
28. Matsumoto K, Yamada H, Takuma N, Niino H, Sagesaka YM. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial. BMC Complement Altern Med. 2011;11:15. doi:10.1186/1472-6882-11-15
29. Lee HE, Yang G, Park YB, et al. Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules. 2019;24(11):E2138. doi:10.3390/molecules24112138
30. Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci. 2011;12(9):5592-5603. doi:10.3390/ijms12095592
31. Chow HH, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res. 2003;9(9):3312-3319.
32. Isomura T, Suzuki S, Origasa H, et al. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials [published correction appears in Eur J Clin Nutr. 2016;70(11):1221-1229]. Eur J Clin Nutr. 2016;70(11):1340. doi:10.1038/ejcn.2016.78
33. Sarma DN, Barrett ML, Chavez ML, et al. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469-484. doi:10.2165/00002018-200831060-00003
34. Oketch-Rabah HA, Roe AL, Rider CV, et al. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep. 2020;7:386-402. doi:10.1016/j.toxrep.2020.02.008
35. Younes M, Aggett P, Aguilar F, et al. Scientific opinion on the safety of green tea catechins. EFSA J. 2018;16(4):e05239. doi:10.2903/j.efsa.2018.5239
36. McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza. Prog Cardiovasc Dis. Published online February 12, 2020. doi:10.1016/j.pcad.2020.02.007
37. Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A. A review on various uses of N-acetyl cysteine. Cell J. 2017;19(1):11-17. doi:10.22074/cellj.2016.4872
38. Bauer IE, Green C, Colpo GD, et al. A double-blind, randomized, placebo-controlled study of aspirin and N-acetylcysteine as adjunctive treatments for bipolar depression. J Clin Psychiatry. 2018;80(1):18m12200. doi:10.4088/JCP.18m12200
39. Berk M, Turner A, Malhi GS, et al. A randomised controlled trial of a mitochondrial therapeutic target for bipolar depression: mitochondrial agents, N-acetylcysteine, and placebo [published correction appears in BMC Med. 2019;17(1):35]. BMC Med. 2019;17(1):18. doi:10.1186/s12916-019-1257-1
40. Clark RSB, Empey PE, Bayőr H, et al. Phase I randomized clinical trial of N-acetylcysteine in combination with an adjuvant probenecid for treatment of severe traumatic brain injury in children. PLoS One. 2017;12(7):e0180280. doi:10.1371/journal.pone.0180280
41. Bhatti J, Nascimento B, Akhtar U, et al. Systematic review of human and animal studies examining the efficacy and safety of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) in traumatic brain injury: impact on neurofunctional outcome and biomarkers of oxidative stress and inflammation. Front Neurol. 2018;8:744. doi:10.3389/fneur.2017.00744
42. Brisdelli F, D’Andrea G, Bozzi A. Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab. 2009;10(6):530-546. doi:10.2174/138920009789375423
43. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):144. doi:10.1186/s12879-017-2253-8
44. Palamara AT, Nencioni L, Aquilano K, et al. Inhibition of influenza A virus replication by resveratrol. J Infect Dis. 2005;191(10):1719-1729. doi:10.1086/429694
45. Euba B, López-López N, Rodríguez-Arce I, et al. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci Rep. 2017;7(1):12860. doi:10.1038/s41598-017-13034-7
46. Mendes da Silva D, Gross LA, Neto EPG, Lessey BA, Savaris RF. The use of resveratrol as an adjuvant treatment of pain in endometriosis: a randomized clinical trial. J Endocr Soc. 2017;1(4):359-369. doi:10.1210/js.2017-00053
47. Zhu CW, Grossman H, Neugroschl J, et al. A randomized, double-blind, placebo-controlled trial of resveratrol with glucose and malate (RGM) to slow the progression of Alzheimer’s disease: a pilot study. Alzheimers Dement (N Y). 2018;4:609-616. doi:10.1016/j.trci.2018.09.009
48. Roberts VH, Pound LD, Thorn SR, et al. Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB J. 2014;28(6):2466-2477. doi:10.1096/fj.13-245472
49. Klink JC, Tewari AK, Masko EM, et al. Resveratrol worsens survival in SCID mice with prostate cancer xenografts in a cell-line specific manner, through paradoxical effects on oncogenic pathways. Prostate. 2013;73(7):754-762. doi:10.1002/pros.22619
50. Shaito A, Posadino AM, Younes N, et al. Potential adverse effects of resveratrol: a literature review. Int J Mol Sci. 2020;21(6):E2084. doi:10.3390/ijms21062084
51. Salehi B, Mishra AP, Nigam M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6(3):E91. doi:10.3390/biomedicines6030091
52. Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci. 2011;1215:161-169. doi:10.1111/j.1749-6632.2010.05853.x
53. Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos. 2014;42(3):301-317. doi:10.1124/dmd.113.055236
54. Mawson AR. Role of fat-soluble vitamins A and D in the pathogenesis of influenza: a new perspective. 2013;2013:246737. Int Sch Res Notices. doi:10.5402/2013/246737
55. Martineau AR, Jolliffe DA, Greenberg L, et al. Vitamin D supplementation to prevent acute respiratory infections: individual participant data meta-analysis. Health Technol Assess. 2019;23(2):1-44. doi:10.3310/hta23020
56. Zhou J, Du J, Huang L, Wang Y, Shi Y, Lin H. Preventive effects of vitamin D on seasonal influenza A in infants: multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749-754. doi:10.1097/INF.0000000000001890
57. Tzilas V, Bouros E, Barbayianni I, et al. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2019;55:17-24. doi:10.1016/j.pupt.2019.01.003
58. Ricca C, Aillon A, Viano M, Bergandi L, Aldieri E, Silvagno F. Vitamin D inhibits the epithelial-mesenchymal transition by a negative feedback regulation of TGF-β activity. J Steroid Biochem Mol Biol. 2019;187:97-105. doi:10.1016/j.jsbmb.2018.11.006
59. Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition [published correction appears in Respir Res. 2015;16:139]. Respir Res. 2014;15:146. doi:10.1186/s12931-014-0146-6
60. Schrumpf JA, Ninaber DK, van der Does AM, Hiemstra PS. TGF-β1 impairs vitamin D-induced and constitutive airway epithelial host defense mechanisms. J Innate Immun. 2020;12(1):74-89. doi:10.1159/000497415
61. Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med. 2010;48(1):1-15. doi:10.1016/j.freeradbiomed.2009.09.026
62. Lu L, Lu Q, Chen W, Li J, Li C, Zheng Z. Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res. 2018;2018:8193523. doi:10.1155/2018/8193523
63. Rao Z, Chen X, Wu J, et al. Vitamin D receptor inhibits NLRP3 activation by impeding its BRCC3-mediated deubiquitination. Front Immunol. 2019;10:2783. doi:10.3389/fimmu.2019.02783
64. Hewison M. Vitamin D and immune function: an overview. Proc Nutr Soc. 2012;71(1):50-61. doi:10.1017/S0029665111001650
65. Fitch N, Becker AB, HayGlass KT. Vitamin D [1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus viral pattern recognition receptor stimuli. J Immunol. 2016;196(7):2965-2972. doi:10.4049/jimmunol.1500460
66. Zdrenghea MT, Makrinioti H, Bagacean C, Bush A, Johnston SL, Stanciu LA. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). doi:10.1002/rmv.1909
67. Verway M, Bouttier M, Wang TT, et al. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog. 2013;9(6):e1003407. doi:10.1371/journal.ppat.1003407
68. Tulk SE, Liao KC, Muruve DA, Li Y, Beck PL, MacDonald JA. Vitamin D3 metabolites enhance the NLRP3-dependent secretion of IL-1β from human THP-1 monocytic cells. J Cell Biochem. 2015;116(5):711-720. doi:10.1002/jcb.24985
69. Lee MT, Kattan M, Fennoy I, et al. Randomized phase 2 trial of monthly vitamin D to prevent respiratory complications in children with sickle cell disease. Blood Adv. 2018;2(9):969-978. doi:10.1182/bloodadvances.2017013979
70. Autier P, Mullie P, Macacu A, et al. Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol. 2017;5(12):986-1004. doi:10.1016/S2213-8587(17)30357-1
71. Sluyter JD, Camargo CA, Waayer D, et al. Effect of monthly, high-dose, long-term vitamin D on lung function: a randomized controlled trial. Nutrients. 2017;9(12):E1353. doi:10.3390/nu9121353
72. Scragg R. The vitamin D assessment (ViDA) study – design and main findings. J Steroid Biochem Mol Biol. 2020;198:105562. doi:10.1016/j.jsbmb.2019.105562
73. Turin A, Bax JJ, Doukas D, et al. Interactions among vitamin D, atrial fibrillation, and the renin-angiotensin-aldosterone system. Am J Cardiol. 2018;122(5):780-784. doi:10.1016/j.amjcard.2018.05.013
74. Zaheer S, Taquechel K, Brown JM, Adler GK, Williams JS, Vaidya A. A randomized intervention study to evaluate the effect of calcitriol therapy on the renin-angiotensin system in diabetes. J Renin Angiotensin Aldosterone Syst. 2018;19(1):1470320317754178. doi:10.1177/1470320317754178
75. Cremer A, Tambosco C, Corcuff JB, et al. Investigating the association of vitamin D with blood pressure and the renin-angiotensin-aldosterone system in hypertensive subjects: a cross-sectional prospective study. J Hum Hypertens. 2018;32(2):114-121. doi:10.1038/s41371-017-0005-2
76. Zittermann A, Ernst JB, Prokop S, et al. Effects of vitamin D supplementation on renin and aldosterone concentrations in patients with advanced heart failure: the EVITA trial. Int J Endocrinol. 2018;2018:5015417. doi:10.1155/2018/5015417
77. Yang P, Gu H, Zhao Z, et al. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep. 2014;4:7027. doi:10.1038/srep07027
78. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep. 2017;16(5):7432-7438. doi:10.3892/mmr.2017.7546
79. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815-1822. doi:10.1001/jama.2010.594
80. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, et al. Monthly high-dose vitamin D treatment for the prevention of functional decline: a randomized clinical trial. JAMA Intern Med. 2016;176(2):175-183. doi:10.1001/jamainternmed.2015.7148
81. Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: a new drug interaction with an unexpected consequence. Clin Pharmacol Ther. 2009;85(2):198-203. doi:10.1038/clpt.2008.165
82. Žofková I. Hypercalcemia. Pathophysiological aspects. Physiol Res. 2016;65(1):1-10. doi:10.33549/physiolres.933059
83. Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endocrinol. 2017;2017:1835195. doi:10.1155/2017/1835195
84. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel CV. Cell Discov. 2020;6:14. doi:10.1038/s41421-020-0153-3
85. Zhang R, Wang X, Ni L, et al. Melatonin as a potential adjuvant treatment. Life Sci. Published online March 23, 2020. doi:10.1016/j.lfs.2020.117583
86. Foley HM, Steel AE. Adverse events associated with oral administration of melatonin: a critical systematic review of clinical evidence. Complement Ther Med. 2019;42:65-81. doi:10.1016/j.ctim.2018.11.003
87. Andersen LP, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig. 2016;36(3):169-175. doi:10.1007/s40261-015-0368-5
88. Herxheimer A, Petrie KJ. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev. 2002;2:CD001520. doi:10.1002/14651858.CD001520
89. Leite Pacheco R, de Oliveira Cruz Latorraca C, Adriano Leal Freitas da Costa A, Luiza Cabrera Martimbianco A, Vianna Pachito D, Riera R. Melatonin for preventing primary headache: a systematic review. Int J Clin Pract. 2018;72(7):e13203. doi:10.1111/ijcp.13203
90. Abdelgadir IS, Gordon MA, Akobeng AK. Melatonin for the management of sleep problems in children with neurodevelopmental disorders: a systematic review and meta-analysis. Arch Dis Child. 2018;103(12):1155-1162. doi:10.1136/archdischild-2017-314181
91. Besag FMC, Vasey MJ, Lao KSJ, Wong ICK. Adverse events associated with melatonin for the treatment of primary or secondary sleep disorders: a systematic review. CNS Drugs. 2019;33(12):1167-1186. doi:10.1007/s40263-019-00680-w
92. Harpsøe NG, Andersen LP, Gögenur I, Rosenberg J. Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol. 2015;71(8):901-909. doi:10.1007/s00228-015-1873-4
93. Wirtz PH, Spillmann M, Bärtschi C, Ehlert U, von Känel R. Oral melatonin reduces blood coagulation activity: a placebo-controlled study in healthy young men. J Pineal Res. 2008;44(2):127-133. doi:10.1111/j.1600-079X.2007.00499.x
94. McGlashan EM, Nandam LS, Vidafar P, Mansfield DR, Rajaratnam SMW, Cain SW. The SSRI citalopram increases the sensitivity of the human circadian system to light in an acute dose. Psychopharmacology (Berl). 2018;235(11):3201-3209. doi:10.1007/s00213-018-5019-0
95. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):E258. doi:10.3390/jcm7090258
96. Cui D, Moldoveanu Z, Stephensen CB. High-level dietary vitamin A enhances T-helper type 2 cytokine production and secretory immunoglobulin A response to influenza A virus infection in BALB/c mice. J Nutr. 2000;130(5):1132-1139. doi:10.1093/jn/130.5.1132
97. Rothman KJ, Moore LL, Singer MR, Nguyen US, Mannino S, Milunsky A. Teratogenicity of high vitamin A intake. N Engl J Med. 1995;333(21):1369-1373. doi:10.1056/NEJM199511233332101
98. Bartlett H, Eperjesi F. Possible contraindications and adverse reactions associated with the use of ocular nutritional supplements. Ophthalmic Physiol Opt. 2005;25(3):179-194. doi:10.1111/j.1475-1313.2005.00294.x
99. Bendich A, Langseth L. Safety of vitamin A. Am J Clin Nutr. 1989;49(2):358-371. doi:10.1093/ajcn/49.2.358
100. Cruz S, da Cruz SP, Ramalho A. Impact of vitamin A supplementation on pregnant women and on women who have just given birth: a systematic review. J Am Coll Nutr. 2018;37(3):243-250. doi:10.1080/07315724.2017.1364182
101. Oliveira JM, Allert R, East CE. Vitamin A supplementation for postpartum women. Cochrane Database Syst Rev. 2016;3:CD005944. doi:10.1002/14651858.CD005944.pub3
102. García-Cortés M, Robles-Díaz M, Ortega-Alonso A, Medina-Caliz I, Andrade RJ. Hepatotoxicity by dietary supplements: a tabular listing and clinical characteristics. Int J Mol Sci. 2016;17(4):537. doi:10.3390/ijms17040537
103. Porter RS, Bode RF. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother Res. 2017;31(4):533-554. doi:10.1002/ptr.5782
104. Chen C, Zuckerman DM, Brantley S, et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res. 2014;10:24. doi:10.1186/1746-6148-10-24
105. Barak V, Halperin T, Kalickman I. The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur Cytokine Netw. 2001;12(2):290-296.
106. Barak V, Birkenfeld S, Halperin T, Kalickman I. The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Isr Med Assoc J. 2002;4(11 Suppl):919-922.
107. Ulbricht C, Basch E, Cheung L, et al. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration. J Diet Suppl. 2014;11(1):80-120. doi:10.3109/19390211.2013.859852
108. Frank T, Janssen M, Netzet G, Christian B, Bitsch I, Netzel M. Absorption and excretion of elderberry (Sambucus nigra L.) anthocyanins in healthy humans. Methods Find Exp Clin Pharmacol. 2007;29(8):525-533. doi:10.1358/mf.2007.29.8.1116309
109. Badescu M, Badulescu O, Badescu L, Ciocoiu M. Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharm Biol. 2015;53(4):533-539. doi:10.3109/13880209.2014.931441
110. Curtis PJ, Kroon PA, Hollands WJ, et al. Cardiovascular disease risk biomarkers and liver and kidney function are not altered in postmenopausal women after ingesting an elderberry extract rich in anthocyanins for 12 weeks. J Nutr. 2009;139(12):2266-2271. doi:10.3945/jn.109.113126
111. Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. doi:10.1016/j.fct.2019.110922
112. Li S, Wu B, Fu W, Reddivari L. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int J Mol Sci. 2019;20(10):E2588. doi:10.3390/ijms20102588
113. Elderberry for influenza. Med Lett Drugs Ther. 2019;61(1566):32. []
114. Hawkins J, Baker C, Cherry L, Dunne E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. Complement Ther Med. 2019;42:361-365. doi:10.1016/j.ctim.2018.12.004
115. Keppel Hesselink JM, de Boer T, Witkamp RF. Palmitoylethanolamide: a natural body-own anti-inflammatory agent, effective and safe against influenza and common cold. Int J Inflam. 2013;2013:151028. doi:10.1155/2013/151028
116. Cordaro M, Cuzzocrea S, Crupi R. An update of palmitoylethanolamide and luteolin effects in preclinical and clinical studies of neuroinflammatory events. Antioxidants (Basel). 2020;9(3):E216. doi:10.3390/antiox9030216
117. Davis MP, Behm B, Mehta Z, Fernandez C. The potential benefits of palmitoylethanolamide in palliation: a qualitative systematic review. Am J Hosp Palliat Care. 2019;36(12):1134-1154. doi:10.1177/1049909119850807
118. Gabrielsson L, Mattsson S, Fowler CJ. Palmitoulethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016;82(4):932-942. doi:10.1111/bcp.13020
119. Natural Medicines Database. Palmitoylethanolamide (PEA). Accessed March 30, 2020.,-herbs-supplements/professional.aspx?productid=1596
120. Fischer Walker C, Black RE. Zinc and the risk for infectious disease. Annu Rev Nutr. 2004;24:255-275. doi:10.1146/annurev.nutr.23.011702.073054
121. Fraker PJ, King LE, Laakko T, Vollmer TL. The dynamic link between the integrity of the immune system and zinc status. J Nutr. 2000;130(5S Suppl):1399S-1406S. doi:10.1093/jn/130.5.1399S
122. Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr. 1998;68(2 Suppl):447S-463S. doi:10.1093/ajcn/68.2.447S
123. Gao H, Dai W, Zhao L, Min J, Wang F. The role of zinc and zinc homeostasis in macrophage function. J Immunol Res. 2018;2018:6872621. doi:10.1155/2018/6872621
124. Meydani SN, Barnett JB, Dallal GE, et al. Serum zinc and pneumonia in nursing home elderly. Am J Clin Nutr. 2007;86(4):1167-1173. doi:10.1093/ajcn/86.4.1167
125. Barnett JB, Dao MC, Hamer DH, et al. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2016;103(3):942-951. doi:10.3945/ajcn.115.115188
126. Maares M, Haase H. Zinc and immunity: an essential interrelation. Arch Biochem Biophys. 2016;611:58-65. doi:10.1016/
127. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. doi:10.1371/journal.ppat.1001176
128. King JC, Brown KH, Gibson RS, et al. Biomarkers of nutrition for development (BOND)—zinc review. J Nutr. 2015;146(4):858S-885S. doi:10.3945/jn.115.220079

Fullscript content philosophy

At Fullscript, we are committed to curating accurate, and reliable educational content for practitioners and patients alike. Our educational offerings cover a broad range of topics related to integrative medicine, such as supplement ingredients, diet, lifestyle, and health conditions.

Medically reviewed by expert practitioners and our internal Integrative Medical Advisory team, all Fullscript content adheres to the following guidelines:

  1. In order to provide unbiased and transparent education, information is based on a research review and obtained from trustworthy sources, such as peer-reviewed articles and government websites. All medical statements are linked to the original reference and all sources of information are disclosed within the article.
  2. Information about supplements is always based on ingredients. No specific products are mentioned or promoted within educational content.
  3. A strict policy against plagiarism is maintained; all our content is unique, curated by our team of writers and editors at Fullscript. Attribution to individual writers and editors is clearly stated in each article.
  4. Resources for patients are intended to be educational and do not replace the relationship between health practitioners and patients. In all content, we clearly recommend that readers refer back to their healthcare practitioners for all health-related questions.
  5. All content is updated on a regular basis to account for new research and industry trends, and the last update date is listed at the top of every article.
  6. Potential conflicts of interest are clearly disclosed.