What is it?


Quercetin (derived from the Latin word quercetum, meaning “oak forest”) is an abundant yellow bioactive flavonoid found in many plant-based foods. (3)(65) In Western diets, daily intakes have been estimated to range between 3 to 40 mg, though intake may be as much as 250 mg in individuals with high fruit and vegetable consumption. (2) Apples, berries, broccoli, cabbage, cauliflower, grapes, nuts, onions, bell pepper, red wine, black and green tea, and tomatoes all contain quercetin, but cooking these foods can substantially reduce their quercetin content. (10) Many popularly used botanicals, including Ginkgo biloba, St. John’s wort, milk thistle, or elderberry, also contain small amounts of quercetin. (45)

Quercetin possesses antioxidative, anti-inflammatory, anti-carcinogenic, anti-microbial, and immunomodulating properties. (2)(64)(65)  Though clinical studies in humans are limited, quercetin may have applications in allergic diseases, (24) bone health, (63) cancer, (46)(61) cardiovascular disease, (18)(39) diabetes, (6)(53) neurocognitive disorders (1)(27)(59)  obesity, (8) viral infection, (30) and wound healing. (43) It is possible that, to date, the clinical use of quercetin has been limited by its low bioavailability; however, as new formulations are developed, improved therapeutic benefits may be achieved. (3)

Main uses

Blood pressure and endothelial function
Muscle fatigue in resistance exercise


Quercetin (aglycone/anhydrous)
Supplements typically contain quercetin in its isolated aglycone or anhydrous form by removing the glucose and water molecules from quercetin that are naturally present in plants and herbs.
This is the purified, lipophilic form of quercetin. (11)
Providing quercetin in a lecithin formulation (Phytosome ®) increased the bioavailability of quercetin aglycone by up to 20x in humans. (49)
Quercetin dihydrate
Supplements may use quercetin dihydrate, which attaches two water molecules to isolated quercetin. By weight, this form contains ~90% quercetin.
An individual would require 16.6 mg of quercetin dihydrate to achieve an equivalent bioavailability to 1 mg from red onion in humans. (54)
The provision of 155 mg of quercetin glycones (from various sugar moieties) from onion skin extract was approximately 5x more bioavailable than 134 mg of quercetin aglycone from quercetin dihydrate in humans. (7)
Enzymatically modified isoquercitrin (EMIQ ®)
EMIQ increases the water solubility of quercetin.
EMIQ was more bioavailable than natural quercetin glucosides in humans. (33)

Dosing & administration

Adverse effects

Quercetin is considered to be well-tolerated, and mild adverse events are rarely reported.  However, published safety information from studies that provide doses higher than 1,000 mg for longer than 12 weeks is not widely available. (2) Many analyses do not show a difference in adverse effects between quercetin and placebo groups or indicate that no adverse events were reported in individual trials. (23)(38)(52)(57)



  • If ingested in plant-based food, quercetin glycosides are hydrolyzed by β-glucosidases to the lipophilic quercetin aglycone form before passive intestinal transport. (2)(3)
  • Quercetin glycosides that are not hydrolyzed may also be uptaken by the sodium/glucose cotransporter-1. (2)
  • Overall, the absorption of quercetin is considered to be low but highly variable between individuals. Absorption may improve in the presence of the sugar moiety, non-digestible fiber, dietary fat, when quercetin aglycone is consumed as part of a food component (vs. purified), or in various nano-formulations. (20)


  • In animal models, the highest levels were found in the liver, small intestine, lungs, testes, and kidneys. (2)


  • Regardless of the ingested form, quercetin is conjugated by phase II enzymes (glucuronidated, sulfated, or methylated) prior to circulation in plasma. (2)(20)


  • Quercetin is eliminated via the feces and urine, mainly as 3-hydroxyphenylacetic acid, benzoic acid, and hippuric acid. (20)
  • Quercetin’s half-life is between 3.5 to 7.5 hours (32)(49)
  1. Amanzadeh, E., Esmaeili, A., Rahgozar, S., & Nourbakhshnia, M. (2019). Application of quercetin in neurological disorders: from nutrition to nanomedicine. Reviews in the Neurosciences, 30(5), 555–572. https://doi.org/10.1515/revneuro-2018-0080
  2. Andres, S., Pevny, S., Ziegenhagen, R., Bakhiya, N., Schäfer, B., Hirsch-Ernst, K. I., & Lampen, A. (2018). Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research, 62(1). https://doi.org/10.1002/mnfr.201700447
  3. Batiha, G. E.-S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., Algammal, A. M., & Elewa, Y. H. A. (2020). The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods (Basel, Switzerland), 9(3). https://doi.org/10.3390/foods9030374
  4. Bazzucchi, I., Patrizio, F., Ceci, R., Duranti, G., Sgrò, P., Sabatini, S., Di Luigi, L., Sacchetti, M., & Felici, F. (2019). The effects of quercetin supplementation on eccentric exercise-induced muscle damage. Nutrients, 11(1). https://doi.org/10.3390/nu11010205
  5. Brüll, V., Burak, C., Stoffel-Wagner, B., Wolffram, S., Nickenig, G., Müller, C., Langguth, P., Alteheld, B., Fimmers, R., Naaf, S., Zimmermann, B. F., Stehle, P., & Egert, S. (2015). Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: A randomised double-blinded placebo-controlled cross-over trial. The British Journal of Nutrition, 114(8), 1263–1277. https://doi.org/10.1017/S0007114515002950
  6. Bule, M., Abdurahman, A., Nikfar, S., Abdollahi, M., & Amini, M. (2019). Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 125, 494–502. https://doi.org/10.1016/j.fct.2019.01.037
  7. Burak, C., Brüll, V., Langguth, P., Zimmermann, B. F., Stoffel-Wagner, B., Sausen, U., Stehle, P., Wolffram, S., & Egert, S. (2017). Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. European Journal of Nutrition, 56(1), 343–353. https://doi.org/10.1007/s00394-015-1084-x
  8. Carrasco-Pozo, C., Cires, M. J., & Gotteland, M. (2019). Quercetin and epigallocatechin gallate in the prevention and treatment of obesity: from molecular to clinical studies. Journal of Medicinal Food, 22(8), 753–770. https://doi.org/10.1089/jmf.2018.0193
  9. Choi, E.-Y., Lee, H., Woo, J. S., Jang, H. H., Hwang, S. J., Kim, H. S., Kim, W.-S., Kim, Y.-S., Choue, R., Cha, Y.-J., Yim, J.-E., & Kim, W. (2015). Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition, 31(9), 1131–1135. https://doi.org/10.1016/j.nut.2015.04.020
  10. Cione, E., La Torre, C., Cannataro, R., Caroleo, M. C., Plastina, P., & Gallelli, L. (2019). Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human microrna modulation. Molecules, 25(1). https://doi.org/10.3390/molecules25010063
  11. Dabeek, W. M., & Marra, M. V. (2019). Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 11(10). https://doi.org/10.3390/nu11102288
  12. Davis, J. M., Carlstedt, C. J., Chen, S., Carmichael, M. D., & Murphy, E. A. (2010). The dietary flavonoid quercetin increases VO(2max) and endurance capacity. International Journal of Sport Nutrition and Exercise Metabolism, 20(1), 56–62. https://doi.org/10.1123/ijsnem.20.1.56
  13. Dower, J. I., Geleijnse, J. M., Gijsbers, L., Schalkwijk, C., Kromhout, D., & Hollman, P. C. (2015). Supplementation of the pure flavonoids epicatechin and quercetin affects some biomarkers of endothelial dysfunction and inflammation in (pre)hypertensive adults: A randomized double-blind, placebo-controlled, crossover trial. The Journal of Nutrition, 145(7), 1459–1463. https://doi.org/10.3945/jn.115.211888
  14. Duranti, G., Ceci, R., Patrizio, F., Sgrò, P., Di Luigi, L., Sabatini, S., Felici, F., & Bazzucchi, I. (2018). Chronic consumption of quercetin reduces erythrocytes oxidative damage: Evaluation at resting and after eccentric exercise in humans. Nutrition Research, 50, 73–81. https://doi.org/10.1016/j.nutres.2017.12.002
  15. Edwards, R. L., Lyon, T., Litwin, S. E., Rabovsky, A., Symons, J. D., & Jalili, T. (2007). Quercetin reduces blood pressure in hypertensive subjects. The Journal of Nutrition, 137(11), 2405–2411. https://doi.org/10.1093/jn/137.11.2405
  16. Egert, S., Boesch-Saadatmandi, C., Wolffram, S., Rimbach, G., & Müller, M. J. (2010). Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. The Journal of Nutrition, 140(2), 278–284. https://doi.org/10.3945/jn.109.117655
  17. Egert, S., Bosy-Westphal, A., Seiberl, J., Kürbitz, C., Settler, U., Plachta-Danielzik, S., Wagner, A. E., Frank, J., Schrezenmeir, J., Rimbach, G., Wolffram, S., & Müller, M. J. (2009). Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. The British Journal of Nutrition, 102(7), 1065–1074. https://doi.org/10.1017/S0007114509359127
  18. Ferenczyova, K., Kalocayova, B., & Bartekova, M. (2020). Potential implications of quercetin and its derivatives in cardioprotection. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051585
  19. Guo, W., Gong, X., & Li, M. (2019). Quercetin actions on lipid profiles in overweight and obese individuals: a systematic review and meta-analysis. Current Pharmaceutical Design, 25(28), 3087–3095. https://doi.org/10.2174/1381612825666190829153552
  20. Guo, Y., & Bruno, R. S. (2015). Endogenous and exogenous mediators of quercetin bioavailability. The Journal of Nutritional Biochemistry, 26(3), 201–210. https://doi.org/10.1016/j.jnutbio.2014.10.008
  21. Guo, Y., Mah, E., Davis, C. G., Jalili, T., Ferruzzi, M. G., Chun, O. K., & Bruno, R. S. (2013). Dietary fat increases quercetin bioavailability in overweight adults. Molecular Nutrition & Food Research, 57(5), 896–905. https://doi.org/10.1002/mnfr.201200619
  22. Hirano, T., Kawai, M., Arimitsu, J., Ogawa, M., Kuwahara, Y., Hagihara, K., Shima, Y., Narazaki, M., Ogata, A., Koyanagi, M., Kai, T., Shimizu, R., Moriwaki, M., Suzuki, Y., Ogino, S., Kawase, I., & Tanaka, T. (2009). Preventative effect of a flavonoid, enzymatically modified isoquercitrin on ocular symptoms of Japanese cedar pollinosis. Allergology International, 58(3), 373–382. https://doi.org/10.2332/allergolint.08-OA-0070
  23. Huang, H., Liao, D., Dong, Y., & Pu, R. (2020). Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: A systematic review and meta-analysis. Nutrition Reviews, 78(8), 615–626. https://doi.org/10.1093/nutrit/nuz071
  24. Jafarinia, M., Sadat Hosseini, M., Kasiri, N., Fazel, N., Fathi, F., Ganjalikhani Hakemi, M., & Eskandari, N. (2020). Quercetin with the potential effect on allergic diseases. Allergy, Asthma, and Clinical Immunology: Official Journal of the Canadian Society of Allergy and Clinical Immunology, 16, 36. https://doi.org/10.1186/s13223-020-00434-0
  25. Javadi, F., Ahmadzadeh, A., Eghtesadi, S., Aryaeian, N., Zabihiyeganeh, M., Rahimi Foroushani, A., & Jazayeri, S. (2017). The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. Journal of the American College of Nutrition, 36(1), 9–15. https://doi.org/10.1080/07315724.2016.1140093
  26. Kawai, M., Hirano, T., Arimitsu, J., Higa, S., Kuwahara, Y., Hagihara, K., Shima, Y., Narazaki, M., Ogata, A., Koyanagi, M., Kai, T., Shimizu, R., Moriwaki, M., Suzuki, Y., Ogino, S., Kawase, I., & Tanaka, T. (2009). Effect of enzymatically modified isoquercitrin, a flavonoid, on symptoms of Japanese cedar pollinosis: A randomized double-blind placebo-controlled trial. International Archives of Allergy and Immunology, 149(4), 359–368. https://doi.org/10.1159/000205582
  27. Khan, H., Ullah, H., Aschner, M., Cheang, W. S., & Akkol, E. K. (2019). Neuroprotective Effects of quercetin in Alzheimer’s disease. Biomolecules, 10(1). https://doi.org/10.3390/biom10010059
  28. Khorshidi, M., Moini, A., Alipoor, E., Rezvan, N., Gorgani-Firuzjaee, S., Yaseri, M., & Hosseinzadeh-Attar, M. J. (2018). The effects of quercetin supplementation on metabolic and hormonal parameters as well as plasma concentration and gene expression of resistin in overweight or obese women with polycystic ovary syndrome. Phytotherapy Research: PTR, 32(11), 2282–2289. https://doi.org/10.1002/ptr.6166
  29. Kressler, J., Millard-Stafford, M., & Warren, G. L. (2011). Quercetin and endurance exercise capacity: A systematic review and meta-analysis. Medicine and Science in Sports and Exercise, 43(12), 2396–2404. https://doi.org/10.1249/MSS.0b013e31822495a7
  30. Mehrbod, P., Hudy, D., Shyntum, D., Markowski, J., Łos, M. J., & Ghavami, S. (2020). Quercetin as a natural therapeutic candidate for the treatment of influenza virus. Biomolecules, 11(1). https://doi.org/10.3390/biom11010010
  31. Mohammadi-Sartang, M., Mazloom, Z., Sherafatmanesh, S., Ghorbani, M., & Firoozi, D. (2017). Effects of supplementation with quercetin on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition, 71(9), 1033–1039. https://doi.org/10.1038/ejcn.2017.55
  32. Moon, Y. J., Wang, L., DiCenzo, R., & Morris, M. E. (2008). Quercetin pharmacokinetics in humans. Biopharmaceutics & Drug Disposition, 29(4), 205–217. https://doi.org/10.1002/bdd.605
  33. Murota, K., Matsuda, N., Kashino, Y., Fujikura, Y., Nakamura, T., Kato, Y., Shimizu, R., Okuyama, S., Tanaka, H., Koda, T., Sekido, K., & Terao, J. (2010). alpha-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Archives of Biochemistry and Biophysics, 501(1), 91–97. https://doi.org/10.1016/j.abb.2010.06.036
  34. Nieman, D. C., Henson, D. A., Gross, S. J., Jenkins, D. P., Davis, J. M., Murphy, E. A., Carmichael, M. D., Dumke, C. L., Utter, A. C., McAnulty, S. R., McAnulty, L. S., & Mayer, E. P. (2007). Quercetin reduces illness but not immune perturbations after intensive exercise. Medicine and Science in Sports and Exercise, 39(9), 1561–1569. https://doi.org/10.1249/mss.0b013e318076b566
  35. Nieman, D. C., Williams, A. S., Shanely, R. A., Jin, F., McAnulty, S. R., Triplett, N. T., Austin, M. D., & Henson, D. A. (2010). Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis. Medicine and Science in Sports and Exercise, 42(2), 338–345. https://doi.org/10.1249/MSS.0b013e3181b18fa3
  36. Omi, N., Shiba, H., Nishimura, E., Tsukamoto, S., Maruki-Uchida, H., Oda, M., & Morita, M. (2019). Effects of enzymatically modified isoquercitrin in supplementary protein powder on athlete body composition: A randomized, placebo-controlled, double-blind trial. Journal of the International Society of Sports Nutrition, 16(1), 39. https://doi.org/10.1186/s12970-019-0303-x
  37. Ostadmohammadi, V., Milajerdi, A., Ayati, E., Kolahdooz, F., & Asemi, Z. (2019). Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy Research: PTR, 33(5), 1330–1340. https://doi.org/10.1002/ptr.6334
  38. Ou, Q., Zheng, Z., Zhao, Y., & Lin, W. (2020). Impact of quercetin on systemic levels of inflammation: A meta-analysis of randomised controlled human trials. International Journal of Food Sciences and Nutrition, 71(2), 152–163. https://doi.org/10.1080/09637486.2019.1627515
  39. Patel, R. V., Mistry, B. M., Shinde, S. K., Syed, R., Singh, V., & Shin, H.-S. (2018). Therapeutic potential of quercetin as a cardiovascular agent. European Journal of Medicinal Chemistry, 155, 889–904. https://doi.org/10.1016/j.ejmech.2018.06.053
  40. Patrizio, F., Ditroilo, M., Felici, F., Duranti, G., De Vito, G., Sabatini, S., Sacchetti, M., & Bazzucchi, I. (2018). The acute effect of quercetin on muscle performance following a single resistance training session. European Journal of Applied Physiology, 118(5), 1021–1031. https://doi.org/10.1007/s00421-018-3834-y
  41. Pelletier, D. M., Lacerte, G., & Goulet, E. D. B. (2013). Effects of quercetin supplementation on endurance performance and maximal oxygen consumption: A meta-analysis. International Journal of Sport Nutrition and Exercise Metabolism, 23(1), 73–82. https://doi.org/10.1123/ijsnem.23.1.73
  42. Pfeuffer, M., Auinger, A., Bley, U., Kraus-Stojanowic, I., Laue, C., Winkler, P., Rüfer, C. E., Frank, J., Bösch-Saadatmandi, C., Rimbach, G., & Schrezenmeir, J. (2013). Effect of quercetin on traits of the metabolic syndrome, endothelial function and inflammation in men with different APOE isoforms. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 23(5), 403–409. https://doi.org/10.1016/j.numecd.2011.08.010
  43. Polerà, N., Badolato, M., Perri, F., Carullo, G., & Aiello, F. (2019). Quercetin and its natural sources in wound healing management. Current Medicinal Chemistry, 26(31), 5825–5848. https://doi.org/10.2174/0929867325666180713150626
  44. Pourteymour Fard Tabrizi, F., Hajizadeh-Sharafabad, F., Vaezi, M., Jafari-Vayghan, H., Alizadeh, M., & Maleki, V. (2020). Quercetin and polycystic ovary syndrome, current evidence and future directions: A systematic review. Journal of Ovarian Research, 13(1), 11. https://doi.org/10.1186/s13048-020-0616-z
  45. Quercetin. (2020). In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.ncbi.nlm.nih.gov/pubmed/32364690
  46. Rauf, A., Imran, M., Khan, I. A., Ur-Rehman, M.-, Gilani, S. A., Mehmood, Z., & Mubarak, M. S. (2018). Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research: PTR, 32(11), 2109–2130. https://doi.org/10.1002/ptr.6155
  47. Rezvan, N., Moini, A., Gorgani-Firuzjaee, S., & Hosseinzadeh-Attar, M. J. (2018). Oral Quercetin supplementation enhances adiponectin receptor transcript expression in polycystic ovary syndrome patients: A randomized placebo-controlled double-blind clinical trial. Cell Journal, 19(4), 627–633. https://doi.org/10.22074/cellj.2018.4577
  48. Rezvan, N., Moini, A., Janani, L., Mohammad, K., Saedisomeolia, A., Nourbakhsh, M., Gorgani-Firuzjaee, S., Mazaherioun, M., & Hosseinzadeh-Attar, M. J. (2017). Effects of quercetin on adiponectin-mediated insulin sensitivity in polycystic ovary syndrome: A randomized placebo-controlled double-blind clinical trial. Hormone and Metabolic Research, 49(2), 115–121. https://doi.org/10.1055/s-0042-118705
  49. Riva, A., Ronchi, M., Petrangolini, G., Bosisio, S., & Allegrini, P. (2019). Improved oral absorption of quercetin from quercetin Phytosome®, a new delivery system based on food grade lecithin. European Journal of Drug Metabolism and Pharmacokinetics, 44(2), 169–177. https://doi.org/10.1007/s13318-018-0517-3
  50. Sahebkar, A. (2017). Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 57(4), 666–676. https://doi.org/10.1080/10408398.2014.948609
  51. Sajadi Hezaveh, Z., Azarkeivan, A., Janani, L., Hosseini, S., & Shidfar, F. (2019). The effect of quercetin on iron overload and inflammation in β-thalassemia major patients: A double-blind randomized clinical trial. Complementary Therapies in Medicine, 46, 24–28. https://doi.org/10.1016/j.ctim.2019.02.017
  52. Serban, M.-C., Sahebkar, A., Zanchetti, A., Mikhailidis, D. P., Howard, G., Antal, D., Andrica, F., Ahmed, A., Aronow, W. S., Muntner, P., Lip, G. Y. H., Graham, I., Wong, N., Rysz, J., Banach, M., & Lipid and blood pressure meta‐analysis collaboration (lbpmc) group. (2016). effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Journal of the American Heart Association, 5(7). https://doi.org/10.1161/JAHA.115.002713
  53. Shi, G.-J., Li, Y., Cao, Q.-H., Wu, H.-X., Tang, X.-Y., Gao, X.-H., Yu, J.-Q., Chen, Z., & Yang, Y. (2019). In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomedicine & Pharmacotherapy, 109, 1085–1099. https://doi.org/10.1016/j.biopha.2018.10.130
  54. Shi, Y., & Williamson, G. (2015). Comparison of the urinary excretion of quercetin glycosides from red onion and aglycone from dietary supplements in healthy subjects: A randomized, single-blinded, cross-over study. Food & Function, 6(5), 1443–1448. https://doi.org/10.1039/c5fo00155b
  55. Shi, Y., & Williamson, G. (2016). Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. The British Journal of Nutrition, 115(5), 800–806. https://doi.org/10.1017/S0007114515005310
  56. Shoskes, D. A., Zeitlin, S. I., Shahed, A., & Rajfer, J. (1999). Quercetin in men with category III chronic prostatitis: A preliminary prospective, double-blind, placebo-controlled trial. Urology, 54(6), 960–963. https://doi.org/10.1016/s0090-4295(99)00358-1
  57. Somerville, V., Bringans, C., & Braakhuis, A. (2017). Polyphenols and performance: A systematic review and meta-analysis. Sports Medicine , 47(8), 1589–1599. https://doi.org/10.1007/s40279-017-0675-5
  58. Tabrizi, R., Tamtaji, O. R., Mirhosseini, N., Lankarani, K. B., Akbari, M., Heydari, S. T., Dadgostar, E., & Asemi, Z. (2020). The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition, 60(11), 1855–1868. https://doi.org/10.1080/10408398.2019.1604491
  59. Tamtaji, O. R., Hadinezhad, T., Fallah, M., Shahmirzadi, A. R., Taghizadeh, M., Behnam, M., & Asemi, Z. (2020). The therapeutic potential of quercetin in Parkinson’s disease: Insights into its molecular and cellular regulation. Current Drug Targets, 21(5), 509–518. https://doi.org/10.2174/1389450120666191112155654
  60. Tamtaji, O. R., Milajerdi, A., Dadgostar, E., Kolahdooz, F., Chamani, M., Amirani, E., Mirzaei, H., & Asemi, Z. (2019). The effects of quercetin supplementation on blood pressures and endothelial function among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Current Pharmaceutical Design, 25(12), 1372–1384. https://doi.org/10.2174/1381612825666190513095352
  61. Tang, S.-M., Deng, X.-T., Zhou, J., Li, Q.-P., Ge, X.-X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy, 121, 109604. https://doi.org/10.1016/j.biopha.2019.109604
  62. Van den Eynde, M. D. G., Geleijnse, J. M., Scheijen, J. L. J. M., Hanssen, N. M. J., Dower, J. I., Afman, L. A., Stehouwer, C. D. A., Hollman, P. C. H., & Schalkwijk, C. G. (2018). Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. The Journal of Nutrition, 148(12), 1911–1916. https://doi.org/10.1093/jn/nxy236
  63. Wong, S. K., Chin, K.-Y., & Ima-Nirwana, S. (2020). Quercetin as an agent for protecting the bone: a review of the current evidence. International Journal of Molecular Sciences, 21(17). https://doi.org/10.3390/ijms21176448
  64. Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6). https://doi.org/10.3390/molecules24061123
  65. Yang, D., Wang, T., Long, M., & Li, P. (2020). Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity, 2020, 8825387. https://doi.org/10.1155/2020/8825387

Get more resources for your practice