Ingredient review

Coenzyme Q10 (CoQ10)

Description

What is it?

Coenzyme Q10 (CoQ10), otherwise known as ubiquinone, is a fat-soluble, non-essential nutrient that plays an important role in free radical scavenging and mitochondrial synthesis of ATP via the electron transport chain. Due to its involvement in energy production and in the reduction of oxidative stress, CoQ10 has been increasingly regarded for its anti-aging properties. (38) The human body stores between 0.5 to 1.5 g of CoQ10 and can synthesize it from tyrosine. (7)(19) CoQ10 continuously interconverts between its oxidized (ubiquinone) and reduced (ubiquinol) state to provide antioxidation and act as a electron-transporting cofactor in the production of energy. While cellular levels are typically stable, several factors may lead to CoQ10 deficiencies, including aging, genetic mutations, several conditions such as cardiomyopathies, fibromyalgia, and liver cirrhosis, and the use of pharmaceutical agents such as statins. (38

CoQ10 supplements can be derived from living tissues or synthesized by bacteria. Bacterial synthesis of CoQ10 appears to provide several manufacturing advantages, including being more economically and environmentally viable. (7)(28)(29)(172)

Main uses

Antioxidation, anti-inflammation, and pain
Cardioprotection and cardiac function
Exercise tolerance and performance
Fatigue and depression
Fertility
Glucose and lipid modulation

Formulations

Two forms of CoQ10 can be found in dietary supplements: ubiquinone and ubiquinol. Generally speaking, CoQ10’s oral bioavailability is relatively low due to its lipophilic and unstable nature as well as its relatively high molecular weight. As a result, various strategies, including taking CoQ10 in divided doses and with meals, formulating products with oil-based carriers (e.g., soy oils) and emulsions, reducing CoQ10 particle sizes, improving particle dispersion, and adding other ingredients to CoQ10 products to improve water solubility, are used to improve CoQ10 supplementation quality. (7)(19)(87)(150)(173)

Form
Characteristics
Ubiquinone
This is the most widely available form in dietary supplements (vs. ubiquinol) and usually found in gel capsules containing a carrier lipid (e.g., soy oil, medium-chain triglycerides, etc.) since CoQ10 is a lipid-soluble molecule. (91)
Water-soluble formulations (see below) can increase bioavailability compared to standard oil-based softgels. (163) They may also eliminate the need to ingest CoQ10 with meals since the use of a water-soluble formulation during a fasted state is equally as bioavailable as an oil-based formulation when administered with food. (111)
Product labels may indicate that the CoQ10 was derived from fermentation, which simply means that it was manufactured using yeast (producing a bioidentical form to what is naturally produced by the body), as opposed to being produced through isolation from animal tissues. (91)
Ubiquinol
As the majority of absorbed CoQ10 is converted to ubiquinol prior to circulation in the blood, manufacturers have theorized that ubiquinol may be a more bioavailable source of CoQ10. (91)
Ubiquinol has been shown to have up to ~2-3 times higher bioavailability than ubiquinone. (45)(78)(80)(87)(179)This suggests that lower doses of ubiquinol could be used to achieve the same effect as higher doses of ubiquinone.
Kaneka is currently the world’s sole manufacturer of ubiquinol.
Cyclodextrin (usually found as an additional ingredient)
Increases CoQ10’s water-solubility and improves its stability (7)
Increased ubiquinone’s bioavailability 2.4-fold compared to standard CoQ10 and was equivalent to ubiquinol (116)
Increased ubiquinone’s bioavailability of a liquid and powdered formulation by 120% and 79%, respectively, compared to a standard oil-based gel capsule (183)
Liquid oil-based emulsions
Increased CoQ10 bioavailability ~5-fold compared to encapsulated CoQ10 powder (93)
Polysorbate nano- encapsulation
Increases CoQ10’s water-solubility
Increased bioavailability ~6-fold compared to standard oil-based formulation (86)
Piperine
Increased CoQ10 bioavailability by 30% compared to a standard gel capsule (10)
Sustained- release formulation
Timed-release formulations (95) may increase bioavailability (though results were not statistically significant). (89)

Dosing & administration

Adverse effects

CoQ10 is considered safe and well-tolerated with low toxicity. In reviews of clinical trials, the use of 1,200 mg for up to 16 months resulted in no greater observed adverse event level than placebo and has been shown to be tolerated at doses up to 3,000 mg over eight months. (7)(62) Minor gastrointestinal-related adverse events have been attributed to the large amounts of oil in CoQ10 capsules. (66) However, systematic reviews and meta-analyses either indicate that trials generally do not report significant adverse events or that there is no difference in the prevalence of adverse events between the use of CoQ10 or placebo. (34)(50)(124)(177)(182)

Pharmacokinetics

Absorption

  • As a lipid-soluble nutrient, CoQ10 absorption is improved in the presence of lipids, such as when consumed with a fatty meal. (7)(19)
  • CoQ10 is absorbed in the small intestine in its reduced form, ubiquinol. (7)(19)
  • Absorption is slow, with most data showing that the highest concentrations occur within 6-8 hours post-ingestion, regardless of the formulation used. (7)(19)
  • Doses should be divided to avoid exceeding active transport capacity and maintain plasma concentrations for longer durations of time. (7)
  • After absorption, CoQ10 is packaged into chylomicrons, VLDL (16%), LDL (58%), and HDL (26%) particles for circulation. Approximately 95% of circulating CoQ10 is ubiquinol. (7)(19)

Distribution

  • CoQ10 exists in virtually every tissue in the body, particularly as ubiquinol. (7)(19)
  • Generally, greater amounts are found in higher energy-requiring organs such as the heart, kidney, liver, muscle, brain, intestine, and lungs (listed in descending order of concentration). (19)
  • About half of CoQ10 is found in mitochondrial membranes and lesser amounts in cytosol or individual organelles. (7)(19)

Metabolism

  • Little is known on the metabolism of CoQ10, though it appears to be CYP P450- mediated. (7)(173)

Excretion

  • CoQ10 metabolites are mainly excreted through fecal or biliary routes, though a small amount can be found in the urine. (19)
  • Its half-life is approximately 33 hours. (7)

References

  1. Abdollahzad, H., Aghdashi, M. A., Asghari Jafarabadi, M., & Alipour, B. (2015). Effects of coenzyme Q10 supplementation on inflammatory cytokines (TNF-α, IL-6) and oxidative stress in rheumatoid arthritis patients: A randomized controlled trial. Archives of Medical Research, 46(7), 527–533. https://doi.org/10.1016/j.arcmed.2015.08.006 
  2. Akbari, A., Mobini, G. R., Agah, S., Morvaridzadeh, M., Omidi, A., Potter, E., Fazelian, S., Ardehali, S. H., Daneshzad, E., & Dehghani, S. (2020). Coenzyme Q10 supplementation and oxidative stress parameters: A systematic review and meta-analysis of clinical trials. European Journal of Clinical Pharmacology, 76(11), 1483–1499. https://doi.org/10.1007/s00228-020-02919-8 
  3. Akbari Fakhrabadi, M., Zeinali Ghotrom, A., Mozaffari-Khosravi, H., Hadi Nodoushan, H., & Nadjarzadeh, A. (2014). Effect of coenzyme Q10 on oxidative stress, glycemic control and inflammation in diabetic neuropathy: A double blind randomized clinical trial. International Journal for Vitamin and Nutrition Research, 84(5-6), 252–260. https://doi.org/10.1024/0300-9831/a000211 
  4. Alcocer-Gómez, E., Culic, O., Navarro-Pando, J. M., Sánchez-Alcázar, J. A., & Bullón, P. (2017). Effect of coenzyme Q10 on psychopathological symptoms in fibromyalgia patients. CNS Neuroscience & Therapeutics, 23(2), 188–189. https://doi.org/10.1111/cns.12668 
  5. Alcocer-Gómez, E., Sánchez-Alcázar, J. A., & Cordero, M. D. (2014). Coenzyme Q10 regulates serotonin levels and depressive symptoms in fibromyalgia patients: Results of a small clinical trial. Journal of Clinical Psychopharmacology, 34(2), 277–278. https://doi.org/10.1097/JCP.0000000000000097 
  6. Almeida, J. T., Esteves, A. L., Martins, F., & Palma, I. (2020). [Approach to Patients with statin intolerance: Evidence-based review]. Acta medica portuguesa, 33(1), 49–57. https://doi.org/10.20344/amp.10376 
  7. Arenas-Jal, M., Suñé-Negre, J. M., & García-Montoya, E. (2020). Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Comprehensive Reviews in Food Science and Food Safety, 19(2), 574–594. https://doi.org/10.1111/1541-4337.12539 
  8. Aslani, Z., Shab-Bidar, S., Fatahi, S., & Djafarian, K. (2018). Effect of coenzyme Q10 supplementation on serum of high sensitivity c-reactive protein level in patients with cardiovascular diseases: A systematic review and meta-analysis of randomized controlled trials. International Journal of Preventive Medicine, 9, 82. https://doi.org/10.4103/ijpvm.IJPVM_263_17 
  9. Ayers, J., Cook, J., Koenig, R. A., Sisson, E. M., & Dixon, D. L. (2018). Recent developments in the role of coenzyme Q10 for coronary heart disease: A systematic review. Current Atherosclerosis Reports, 20(6), 29. https://doi.org/10.1007/s11883-018-0730-1 
  10. Badmaev, V., Majeed, M., & Prakash, L. (2000). Piperine derived from black pepper increases the plasma levels of coenzyme Q10 following oral supplementation. The Journal of Nutritional Biochemistry, 11(2), 109–113. https://doi.org/10.1016/s0955-2863(99)00074-1 
  11. Bagheri Nesami, N., Mozaffari-Khosravi, H., Najarzadeh, A., & Salehifar, E. (2015). The Effect of coenzyme Q10 supplementation on pro-inflammatory factors and adiponectin in mildly hypertensive patients: A randomized, double-blind, placebo-controlled trial. International Journal for Vitamin and Nutrition Research, 85(3-4), 156–164. https://doi.org/10.1024/0300-9831/a000234 
  12. Bakhshayeshkaram, M., Lankarani, K. B., Mirhosseini, N., Tabrizi, R., Akbari, M., Dabbaghmanesh, M. H., & Asemi, Z. (2018). The effects of coenzyme Q10 supplementation on metabolic profiles of patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Current Pharmaceutical Design, 24(31), 3710–3723. https://doi.org/10.2174/1381612824666181112112857 
  13. Balercia, G., Buldreghini, E., Vignini, A., Tiano, L., Paggi, F., Amoroso, S., Ricciardo-Lamonica, G., Boscaro, M., Lenzi, A., & Littarru, G. (2009). Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: A placebo-controlled, double-blind randomized trial. Fertility and Sterility, 91(5), 1785–1792. https://doi.org/10.1016/j.fertnstert.2008.02.119 
  14. Banach, M., Serban, C., Sahebkar, A., Ursoniu, S., Rysz, J., Muntner, P., Toth, P. P., Jones, S. R., Rizzo, M., Glasser, S. P., Lip, G. Y. H., Dragan, S., Mikhailidis, D. P., & Lipid and Blood Pressure Meta-analysis Collaboration Group. (2015). Effects of coenzyme Q10 on statin-induced myopathy: A meta-analysis of randomized controlled trials. Mayo Clinic Proceedings. Mayo Clinic, 90(1), 24–34. https://doi.org/10.1016/j.mayocp.2014.08.021 
  15. Barbieri, B., Lund, B., Lundström, B., & Scaglione, F. (1999). Coenzyme Q10 administration increases antibody titer in hepatitis B vaccinated volunteers–A single blind placebo-controlled and randomized clinical study. BioFactors, 9(2-4), 351–357. https://doi.org/10.1002/biof.5520090235 
  16. Belardinelli, R., Muçaj, A., Lacalaprice, F., Solenghi, M., Principi, F., Tiano, L., & Littarru, G. P. (2005). Coenzyme Q10 improves contractility of dysfunctional myocardium in chronic heart failure. BioFactors, 25(1-4), 137–145. https://doi.org/10.1002/biof.5520250115 
  17. Belardinelli, R., Muçaj, A., Lacalaprice, F., Solenghi, M., Seddaiu, G., Principi, F., Tiano, L., & Littarru, G. P. (2006). Coenzyme Q10 and exercise training in chronic heart failure. European Heart Journal, 27(22), 2675–2681. https://doi.org/10.1093/eurheartj/ehl158 
  18. Berman, M., Erman, A., Ben-Gal, T., Dvir, D., Georghiou, G. P., Stamler, A., Vered, Y., Vidne, B. A., & Aravot, D. (2004). Coenzyme Q10 in patients with end-stage heart failure awaiting cardiac transplantation: A randomized, placebo-controlled study. Clinical Cardiology, 27(5), 295–299. https://doi.org/10.1002/clc.4960270512 
  19. Bhagavan, H. N., & Chopra, R. K. (2006). Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radical Research, 40(5), 445–453. https://doi.org/10.1080/10715760600617843 
  20. Bresolin, N., Doriguzzi, C., Ponzetto, C., Angelini, C., Moroni, I., Castelli, E., Cossutta, E., Binda, A., Gallanti, A., & Gabellini, S. (1990). Ubidecarenone in the treatment of mitochondrial myopathies: A multi-center double-blind trial. Journal of the Neurological Sciences, 100(1-2), 70–78. https://doi.org/10.1016/0022-510x(90)90015-f 
  21. Buhling, K., Schumacher, A., Eulenburg, C. Z., & Laakmann, E. (2019). Influence of oral vitamin and mineral supplementation on male infertility: A meta-analysis and systematic review. Reproductive Biomedicine Online, 39(2), 269–279. https://doi.org/10.1016/j.rbmo.2019.03.099 
  22. Burke, B. E., Neuenschwander, R., & Olson, R. D. (2001). Randomized, double-blind, placebo-controlled trial of coenzyme Q10 in isolated systolic hypertension. Southern Medical Journal, 94(11), 1112–1117. https://doi.org/10.1097/00007611-200111000-00015 
  23. Caso, G., Kelly, P., McNurlan, M. A., & Lawson, W. E. (2007). Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. The American Journal of Cardiology, 99(10), 1409–1412. https://doi.org/10.1016/j.amjcard.2006.12.063 
  24. Chello, M., Mastroroberto, P., Romano, R., Bevacqua, E., Pantaleo, D., Ascione, R., Marchese, A. R., & Spampinato, N. (1994). Protection by coenzyme Q10 from myocardial reperfusion injury during coronary artery bypass grafting. The Annals of Thoracic Surgery, 58(5), 1427–1432. https://doi.org/10.1016/0003-4975(94)91928-3 
  25. Chello, M., Mastroroberto, P., Romano, R., Castaldo, P., Bevacqua, E., & Marchese, A. R. (1996). Protection by coenzyme Q10 of tissue reperfusion injury during abdominal aortic cross-clamping. The Journal of Cardiovascular Surgery, 37(3), 229–235. https://www.ncbi.nlm.nih.gov/pubmed/8698756 
  26. Chen, F., Liu, F., Lu, J., Yang, X., Xiao, B., Jin, Y., & Zhang, J. (2018). Coenzyme Q10 combined with trimetazidine in the prevention of contrast-induced nephropathy in patients with coronary heart disease complicated with renal dysfunction undergoing elective cardiac catheterization: a randomized control study and in vivo study. European Journal of Medical Research, 23(1), 23. https://doi.org/10.1186/s40001-018-0320-2 
  27. Chen, R. S., Huang, C. C., & Chu, N. S. (1997). Coenzyme Q10 treatment in mitochondrial encephalomyopathies. Short-term double-blind, crossover study. European Neurology, 37(4), 212–218. https://doi.org/10.1159/000117445 
  28. Choi, J.-H., Ryu, Y.-W., & Seo, J.-H. (2005). Biotechnological production and applications of coenzyme Q10. Applied Microbiology and Biotechnology, 68(1), 9–15. https://doi.org/10.1007/s00253-005-1946-x 
  29. Cluis, C. P.,urja, A. M., & Martin, V. J. J. (2007). Current prospects for the production of coenzyme Q10 in microbes. Trends in Biotechnology, 25(11), 514–521. https://doi.org/10.1016/j.tibtech.2007.08.008 
  30. Cordero, M. D., Alcocer-Gómez, E., Culic, O., Carrión, A. M., de Miguel, M., Díaz-Parrado, E., Pérez-Villegas, E. M., Bullón, P., Battino, M., & Sánchez-Alcazar, J. A. (2014). NLRP3 inflammasome is activated in fibromyalgia: The effect of coenzyme Q10. Antioxidants & Redox Signaling, 20(8), 1169–1180. https://doi.org/10.1089/ars.2013.5198 
  31. Cordero, M. D., Alcocer-Gómez, E., de Miguel, M., Culic, O., Carrión, A. M., Alvarez-Suarez, J. M., Bullón, P., Battino, M., Fernández-Rodríguez, A., & Sánchez-Alcazar, J. A. (2013). Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia? Antioxidants & Redox Signaling, 19(12), 1356–1361. https://doi.org/10.1089/ars.2013.5260 
  32. Dahri, M., Tarighat-Esfanjani, A., Asghari-Jafarabadi, M., & Hashemilar, M. (2019). Oral coenzyme Q10 supplementation in patients with migraine: Effects on clinical features and inflammatory markers. Nutritional Neuroscience, 22(9), 607–615. https://doi.org/10.1080/1028415X.2017.1421039 
  33. Dai, Y.-L., Luk, T.-H., Yiu, K.-H., Wang, M., Yip, P. M. C., Lee, S. W. L., Li, S.-W., Tam, S., Fong, B., Lau, C.-P., Siu, C.-W., & Tse, H.-F. (2011). Reversal of mitochondrial dysfunction by coenzyme Q10 supplement improves endothelial function in patients with ischaemic left ventricular systolic dysfunction: A randomized controlled trial. Atherosclerosis, 216(2), 395–401. https://doi.org/10.1016/j.atherosclerosis.2011.02.013 
  34. de Frutos, F., Gea, A., Hernandez-Estefania, R., & Rabago, G. (2015). Prophylactic treatment with coenzyme Q10 in patients undergoing cardiac surgery: Could an antioxidant reduce complications? A systematic review and meta-analysis. Interactive Cardiovascular and Thoracic Surgery, 20(2), 254–259. https://doi.org/10.1093/icvts/ivu334 
  35. Deichmann, R. E., Lavie, C. J., & Dornelles, A. C. (2012). Impact of coenzyme Q-10 on parameters of cardiorespiratory fitness and muscle performance in older athletes taking statins. The Physician and Sportsmedicine, 40(4), 88–95. https://doi.org/10.3810/psm.2012.11.1991 
  36. Derosa, G., D’Angelo, A., & Maffioli, P. (2019). Coenzyme Q10 liquid supplementation in dyslipidemic subjects with statin-related clinical symptoms: A double-blind, randomized, placebo-controlled study. Drug Design, Development and Therapy, 13, 3647–3655. https://doi.org/10.2147/DDDT.S223153 
  37. Di Pierro, F., Rossi, A., Consensi, A., Giacomelli, C., & Bazzichi, L. (2017). Role for a water-soluble form of CoQ10 in female subjects affected by fibromyalgia. A preliminary study. Clinical and Experimental Rheumatology, 35 Suppl 105(3), 20–27. https://www.ncbi.nlm.nih.gov/pubmed/27974102 
  38. Díaz-Casado, M. E., Quiles, J. L., Barriocanal-Casado, E., González-García, P., Battino, M., López, L. C., & Varela-López, A. (2019). The paradox of coenzyme Q10 in aging. Nutrients, 11(9). https://doi.org/10.3390/nu11092221 
  39. Diaz-Castro, J., Moreno-Fernandez, J., Chirosa, I., Chirosa, L. J., Guisado, R., & Ochoa, J. J. (2020). Beneficial effect of ubiquinol on hematological and inflammatory signaling during exercise. Nutrients, 12(2). https://doi.org/10.3390/nu12020424 
  40. Dludla, P. V., Nyambuya, T. M., Orlando, P., Silvestri, S., Mxinwa, V., Mokgalaboni, K., Nkambule, B. B., Louw, J., Muller, C. J. F., & Tiano, L. (2020). The impact of coenzyme Q10 on metabolic and cardiovascular disease profiles in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Endocrinology, Diabetes & Metabolism, 3(2), e00118. https://doi.org/10.1002/edm2.118 
  41. El Refaeey, A., Selem, A., & Badawy, A. (2014). Combined coenzyme Q10 and clomiphene citrate for ovulation induction in clomiphene-citrate-resistant polycystic ovary syndrome. Reproductive Biomedicine Online, 29(1), 119–124. https://doi.org/10.1016/j.rbmo.2014.03.011 
  42. Emami, A., & Bazargani-Gilani, B. (2018). Effect of oral CoQ10 supplementation along with precooling strategy on cellular response to oxidative stress in elite swimmers. Food & Function, 9(8), 4384–4393. https://doi.org/10.1039/c8fo00960k 
  43. Emami, A., Tofighi, A., Asri-Rezaei, S., & Bazargani-Gilani, B. (2018a). The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. The British Journal of Nutrition, 119(4), 381–390. https://doi.org/10.1017/S0007114517003774 
  44. Emami, A., Tofighi, A., Asri-Rezaei, S., & Bazargani-Gilani, B. (2018b). Effect of Short-term coenzyme Q10 supplementation and precooling on serum endogenous antioxidant enzymes of elite swimmers. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 32(5), 1431–1439. https://doi.org/10.1519/JSC.0000000000001971 
  45. Evans, M., Baisley, J., Barss, S., & Guthrie, N. (2009). A randomized, double-blind trial on the bioavailability of two CoQ10 formulations. Journal of Functional Foods, 1(1), 65–73. https://doi.org/10.1016/j.jff.2008.09.010 
  46. Fallah, M., Askari, G., Soleimani, A., Feizi, A., & Asemi, Z. (2018). Clinical trial of the effects of coenzyme Q10 supplementation on glycemic control and markers of lipid profiles in diabetic hemodialysis patients. International Urology and Nephrology, 50(11), 2073–2079. https://doi.org/10.1007/s11255-018-1973-z 
  47. Fan, L., Feng, Y., Chen, G.-C., Qin, L.-Q., Fu, C.-L., & Chen, L.-H. (2017). Effects of coenzyme Q10 supplementation on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 119, 128–136. https://doi.org/10.1016/j.phrs.2017.01.032 
  48. Farsi, F., Heshmati, J., Keshtkar, A., Irandoost, P., Alamdari, N. M., Akbari, A., Janani, L., Morshedzadeh, N., & Vafa, M. (2019). Can coenzyme Q10 supplementation effectively reduce human tumor necrosis factor-α and interleukin-6 levels in chronic inflammatory diseases? A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 148, 104290. https://doi.org/10.1016/j.phrs.2019.104290 
  49. Farsi, F., Mohammadshahi, M., Alavinejad, P., Rezazadeh, A., Zarei, M., & Engali, K. A. (2016). Functions of coenzyme Q10 supplementation on liver enzymes, markers of systemic inflammation, and adipokines in patients affected by nonalcoholic fatty liver disease: A double-blind, placebo-controlled, randomized clinical trial. Journal of the American College of Nutrition, 35(4), 346–353. https://doi.org/10.1080/07315724.2015.1021057 
  50. Florou, P., Anagnostis, P., Theocharis, P., Chourdakis, M., & Goulis, D. G. (2020). Does coenzyme Q10 supplementation improve fertility outcomes in women undergoing assisted reproductive technology procedures? A systematic review and meta-analysis of randomized-controlled trials. Journal of Assisted Reproduction and Genetics, 37(10), 2377–2387. https://doi.org/10.1007/s10815-020-01906-3 
  51. Fotino, A. D., Thompson-Paul, A. M., & Bazzano, L. A. (2013). Effect of coenzyme Q₁₀ supplementation on heart failure: A meta-analysis. The American Journal of Clinical Nutrition, 97(2), 268–275. https://doi.org/10.3945/ajcn.112.040741 
  52. Gao, L., Mao, Q., Cao, J., Wang, Y., Zhou, X., & Fan, L. (2012). Effects of coenzyme Q10 on vascular endothelial function in humans: A meta-analysis of randomized controlled trials. Atherosclerosis, 221(2), 311–316. https://doi.org/10.1016/j.atherosclerosis.2011.10.027 
  53. Gholami, M., Rezvanfar, M. R., Delavar, M., Abdollahi, M., & Khosrowbeygi, A. (2019). Effects of coenzyme Q10 supplementation on serum values of gamma-glutamyl transferase, pseudocholinesterase, bilirubin, ferritin, and high-sensitivity c-reactive protein in women with type 2 diabetes. Experimental and Clinical Endocrinology & Diabetes, 127(5), 311–319. https://doi.org/10.1055/s-0043-124183 
  54. Gholami, M., Zarei, P., Sadeghi Sedeh, B., Rafiei, F., & Khosrowbeygi, A. (2018). Effects of coenzyme Q10 supplementation on serum values of adiponectin, leptin, 8-isoprostane and malondialdehyde in women with type 2 diabetes. Gynecological Endocrinology, 34(12), 1059–1063. https://doi.org/10.1080/09513590.2018.1481944 
  55. Gholnari, T., Aghadavod, E., Soleimani, A., Hamidi, G. A., Sharifi, N., & Asemi, Z. (2018). The effects of coenzyme Q10 supplementation on glucose metabolism, lipid profiles, inflammation, and oxidative stress in patients with diabetic nephropathy: A randomized, double-blind, placebo-controlled trial. Journal of the American College of Nutrition, 37(3), 188–193. https://doi.org/10.1080/07315724.2017.1386140 
  56. Glover, E. I., Martin, J., Maher, A., Thornhill, R. E., Moran, G. R., & Tarnopolsky, M. A. (2010). A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle & Nerve, 42(5), 739–748. https://doi.org/10.1002/mus.21758 
  57. Guastini, L., Mora, R., Dellepiane, M., Santomauro, V., Giorgio, M., & Salami, A. (2011). Water-soluble coenzyme Q10 formulation in presbycusis: Long-term effects. Acta Oto-Laryngologica, 131(5), 512–517. https://doi.org/10.3109/00016489.2010.539261 
  58. Gül, I., Gökbel, H., Belviranli, M., Okudan, N., Büyükbaş, S., & Başarali, K. (2011). Oxidative stress and antioxidant defense in plasma after repeated bouts of supramaximal exercise: The effect of coenzyme Q10. The Journal of Sports Medicine and Physical Fitness, 51(2), 305–312. https://www.ncbi.nlm.nih.gov/pubmed/21681167 
  59. Hamilton, S. J., Chew, G. T., & Watts, G. F. (2009). Coenzyme Q10 improves endothelial dysfunction in statin-treated type 2 diabetic patients. Diabetes Care, 32(5), 810–812. https://doi.org/10.2337/dc08-1736 
  60. Heidari, A., Hamidi, G., Soleimani, A., Aghadavod, E., & Asemi, Z. (2018). Effects of coenzyme Q10 supplementation on gene expressions related to insulin, lipid, and inflammation pathways in patients with diabetic nephropathy. Iranian Journal of Kidney Diseases, 12(1), 14–21. https://www.ncbi.nlm.nih.gov/pubmed/29421772 
  61. Hernández-Ojeda, J., Cardona-Muñoz, E. G., Román-Pintos, L. M., Troyo-Sanromán, R., Ortiz-Lazareno, P. C., Cárdenas-Meza, M. A., Pascoe-González, S., & Miranda-Díaz, A. G. (2012). The effect of ubiquinone in diabetic polyneuropathy: A randomized double-blind placebo-controlled study. Journal of Diabetes and Its Complications, 26(4), 352–358. https://doi.org/10.1016/j.jdiacomp.2012.04.004 
  62. Hidaka, T., Fujii, K., Funahashi, I., Fukutomi, N., & Hosoe, K. (2008). Safety assessment of coenzyme Q10 (CoQ10). BioFactors, 32(1-4), 199–208. https://doi.org/10.1002/biof.5520320124 
  63. Hodgson, J. M., Watts, G. F., Playford, D. A., Burke, V., & Croft, K. D. (2002). Coenzyme Q10 improves blood pressure and glycaemic control: A controlled trial in subjects with type 2 diabetes. European Journal of Clinical Nutrition, 56(11), 1137–1142. https://doi.org/10.1038/sj.ejcn.1601464 
  64. Hopper, I., Connell, C., Briffa, T., De Pasquale, C. G., Driscoll, A., Kistler, P. M., Macdonald, P. S., Sindone, A., Thomas, L., & Atherton, J. J. (2020). Nutraceuticals in patients with heart failure: a systematic review. Journal of Cardiac Failure, 26(2), 166–179. https://doi.org/10.1016/j.cardfail.2019.10.014 
  65. Hosseinzadeh-Attar, M., Kolahdouz Mohammadi, R., Eshraghian, M., Nakhjavani, M., Khorrami, E., Ebadi, M., & Esteghamati, A. (2015). Reduction in asymmetric dimethylarginine plasma levels by coenzyme Q10 supplementation in patients with type 2 diabetes mellitus. Minerva Endocrinologica, 40(4), 259–266. https://www.ncbi.nlm.nih.gov/pubmed/26140473 
  66. Ikematsu, H., Nakamura, K., Harashima, S.-I., Fujii, K., & Fukutomi, N. (2006). Safety assessment of coenzyme Q10 (Kaneka Q10) in healthy subjects: A double-blind, randomized, placebo-controlled trial. Regulatory Toxicology and Pharmacology, 44(3), 212–218. https://doi.org/10.1016/j.yrtph.2005.12.002 
  67. Izadi, A., Ebrahimi, S., Shirazi, S., Taghizadeh, S., Parizad, M., Farzadi, L., & Gargari, B. P. (2019). Hormonal and metabolic effects of coenzyme Q10 and/or vitamin E in patients with polycystic ovary syndrome. The Journal of Clinical Endocrinology and Metabolism, 104(2), 319–327. https://doi.org/10.1210/jc.2018-01221 
  68. Izadi, A., Shirazi, S., Taghizadeh, S., & Gargari, B. P. (2019). Independent and additive effects of coenzyme Q10 and vitamin e on cardiometabolic outcomes and visceral adiposity in women with polycystic ovary syndrome. Archives of Medical Research, 50(2), 1–10. https://doi.org/10.1016/j.arcmed.2019.04.004 
  69. Jafari, M., Mousavi, S. M., Asgharzadeh, A., & Yazdani, N. (2018). Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart Journal, 70 Suppl 1, S111–S117. https://doi.org/10.1016/j.ihj.2018.01.031 
  70. Jorat, M. V., Tabrizi, R., Kolahdooz, F., Akbari, M., Salami, M., Heydari, S. T., & Asemi, Z. (2019). The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology, 27(2), 233–248. https://doi.org/10.1007/s10787-019-00572-x 
  71. Jorat, M. V., Tabrizi, R., Mirhosseini, N., Lankarani, K. B., Akbari, M., Heydari, S. T., Mottaghi, R., & Asemi, Z. (2018). The effects of coenzyme Q10 supplementation on lipid profiles among patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Lipids in Health and Disease, 17(1), 230. https://doi.org/10.1186/s12944-018-0876-4 
  72. Kamikawa, T., Kobayashi, A., Yamashita, T., Hayashi, H., & Yamazaki, N. (1985). Effects of coenzyme Q10 on exercise tolerance in chronic stable angina pectoris. The American Journal of Cardiology, 56(4), 247–251. https://doi.org/10.1016/0002-9149(85)90843-4 
  73. Kennedy, C., Köller, Y., & Surkova, E. (2020). Effect of coenzyme Q10 on statin-associated myalgia and adherence to statin therapy: A systematic review and meta-analysis. Atherosclerosis, 299, 1–8. https://doi.org/10.1016/j.atherosclerosis.2020.03.006 
  74. Keogh, A., Fenton, S., Leslie, C., Aboyoun, C., Macdonald, P., Zhao, Y. C., Bailey, M., & Rosenfeldt, F. (2003). Randomised double-blind, placebo-controlled trial of coenzyme Q, therapy in class II and III systolic heart failure. Heart, Lung & Circulation, 12(3), 135–141. https://doi.org/10.1046/j.1443-9506.2003.00189.x 
  75. Khan, A., Johnson, D. K., Carlson, S., Hocum-Stone, L., Kelly, R. F., Gravely, A. A., Mbai, M., Green, D. L., Santilli, S., Garcia, S., Adabag, S., & McFalls, E. O. (2020). NT-Pro BNP predicts myocardial injury post-vascular surgery and is reduced with CoQ10: A randomized double-blind trial. Annals of Vascular Surgery, 64, 292–302. https://doi.org/10.1016/j.avsg.2019.09.017 
  76. Kocharian, A., Shabanian, R., Rafiei-Khorgami, M., Kiani, A., & Heidari-Bateni, G. (2009). Coenzyme Q10 improves diastolic function in children with idiopathic dilated cardiomyopathy. Cardiology in the Young, 19(5), 501–506. https://doi.org/10.1017/S1047951109990795 
  77. Kon, M., Tanabe, K., Akimoto, T., Kimura, F., Tanimura, Y., Shimizu, K., Okamoto, T., & Kono, I. (2008). Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10. The British Journal of Nutrition, 100(4), 903–909. https://doi.org/10.1017/S0007114508926544 
  78. Kurowska, E. M., Dresser, G., Deutsch, L., Bassoo, E., & Freeman, D. J. (2003). Relative bioavailability and antioxidant potential of two coenzyme Q10 preparations. Annals of Nutrition & Metabolism, 47(1), 16–21. https://doi.org/10.1159/000068910 
  79. Lafuente, R., González-Comadrán, M., Solà, I., López, G., Brassesco, M., Carreras, R., & Checa, M. A. (2013). Coenzyme Q10 and male infertility: A meta-analysis. Journal of Assisted Reproduction and Genetics, 30(9), 1147–1156. https://doi.org/10.1007/s10815-013-0047-5 
  80. Langsjoen, P. H., & Langsjoen, A. M. (2014). Comparison study of plasma coenzyme Q10 levels in healthy subjects supplemented with ubiquinol versus ubiquinone. Clinical Pharmacology in Drug Development, 3(1), 13–17. https://doi.org/10.1002/cpdd.73 
  81. Lee, B.-J., Huang, Y.-C., Chen, S.-J., & Lin, P.-T. (2012a). Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition , 28(3), 250–255. https://doi.org/10.1016/j.nut.2011.06.004 
  82. Lee, B.-J., Huang, Y.-C., Chen, S.-J., & Lin, P.-T. (2012b). Effects of coenzyme Q10 supplementation on inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, and homocysteine) in patients with coronary artery disease. Nutrition , 28(7-8), 767–772. https://doi.org/10.1016/j.nut.2011.11.008 
  83. Lee, B.-J., Tseng, Y.-F., Yen, C.-H., & Lin, P.-T. (2013). Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary artery disease patients during statins therapy: A randomized, placebo-controlled trial. Nutrition Journal, 12(1), 142. https://doi.org/10.1186/1475-2891-12-142 
  84. Lee, Y.-J., Cho, W.-J., Kim, J.-K., & Lee, D.-C. (2011). Effects of coenzyme Q10 on arterial stiffness, metabolic parameters, and fatigue in obese subjects: A double-blind randomized controlled study. Journal of Medicinal Food, 14(4), 386–390. https://doi.org/10.1089/jmf.2010.1202 
  85. Lei, L., & Liu, Y. (2017). Efficacy of coenzyme Q10 in patients with cardiac failure: A meta-analysis of clinical trials. BMC Cardiovascular Disorders, 17(1), 196. https://doi.org/10.1186/s12872-017-0628-9 
  86. Liu, Z.-X., & Artmann, C. (2009). Relative bioavailability comparison of different coenzyme Q10 formulations with a novel delivery system. Alternative Therapies in Health and Medicine, 15(2), 42–46. https://www.ncbi.nlm.nih.gov/pubmed/19284181 
  87. López-Lluch, G., Del Pozo-Cruz, J., Sánchez-Cuesta, A., Cortés-Rodríguez, A. B., & Navas, P. (2019). Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition, 57, 133–140. https://doi.org/10.1016/j.nut.2018.05.020 
  88. Lowry, E., Marley, J., McVeigh, J. G., McSorley, E., Allsopp, P., & Kerr, D. (2020). Dietary interventions in the management of fibromyalgia: A systematic review and best-evidence synthesis. Nutrients, 12(9). https://doi.org/10.3390/nu12092664 
  89. Lu, W.-L., Zhang, Q., Lee, H.-S., Zhou, T.-Y., Sun, H.-D., Zhang, D.-W., Zheng, L., Lee, M., & Wong, S.-M. (2003). Total coenzyme Q10 concentrations in Asian men following multiple oral 50-mg doses administered as coenzyme Q10 sustained release tablets or regular tablets. Biological & Pharmaceutical Bulletin, 26(1), 52–55. https://doi.org/10.1248/bpb.26.52 
  90. Madmani, M. E., Yusuf Solaiman, A., Tamr Agha, K., Madmani, Y., Shahrour, Y., Essali, A., & Kadro, W. (2014). Coenzyme Q10 for heart failure. Cochrane Database of Systematic Reviews, 6, CD008684. https://doi.org/10.1002/14651858.CD008684.pub2 
  91. Mantle, D., & Dybring, A. (2020). Bioavailability of coenzyme Q10: An overview of the absorption process and subsequent metabolism. Antioxidants, 9(5). https://doi.org/10.3390/antiox9050386 
  92. Marcoff, L., & Thompson, P. D. (2007). The role of coenzyme Q10 in statin-associated myopathy: A systematic review. Journal of the American College of Cardiology, 49(23), 2231–2237. https://doi.org/10.1016/j.jacc.2007.02.049 
  93. Martinefski, M., Samassa, P., Buontempo, F., Höcht, C., Lucangioli, S., & Tripodi, V. (2017). Relative bioavailability of coenzyme Q10 formulation for paediatric individualized therapy. The Journal of Pharmacy and Pharmacology, 69(5), 567–573. https://doi.org/10.1111/jphp.12613 
  94. Martínez-Rodríguez, A., Cuestas-Calero, B. J., Hernández-García, M., Martíez-Olcina, M., Vicente-Martínez, M., & Rubio-Arias, J. Á. (2020). Effect of supplements on endurance exercise in the older population: Systematic review. International Journal of Environmental Research and Public Health, 17(14). https://doi.org/10.3390/ijerph17145224 
  95. Martucci, A., Reurean-Pintilei, D., & Manole, A. (2019). Bioavailability and sustained plasma concentrations of CoQ10 in healthy volunteers by a novel oral timed-release preparation. Nutrients, 11(3). https://doi.org/10.3390/nu11030527 
  96. Mazidi, M., Kengne, A. P., Banach, M., & Lipid and Blood Pressure Meta-analysis Collaboration Group. (2018). Effects of coenzyme Q10 supplementation on plasma C-reactive protein concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 128, 130–136. https://doi.org/10.1016/j.phrs.2017.08.011 
  97. Mehrabani, S., Askari, G., Miraghajani, M., Tavakoly, R., & Arab, A. (2019). Effect of coenzyme Q10 supplementation on fatigue: A systematic review of interventional studies. Complementary Therapies in Medicine, 43, 181–187. https://doi.org/10.1016/j.ctim.2019.01.022 
  98. Mehrdadi, P., Kolahdouz Mohammadi, R., Alipoor, E., Eshraghian, M. R., Esteghamati, A., & Hosseinzadeh-Attar, M. J. (2017). The Effect of coenzyme Q10 supplementation on circulating levels of novel adipokine adipolin/ctrp12 in overweight and obese patients with type 2 diabetes. Experimental and Clinical Endocrinology & Diabetes, 125(3), 156–162. https://doi.org/10.1055/s-0042-110570 
  99. Mehrpooya, M., Yasrebifar, F., Haghighi, M., Mohammadi, Y., & Jahangard, L. (2018). Evaluating the effect of coenzyme Q10 augmentation on treatment of bipolar depression: A double-blind controlled clinical trial. Journal of Clinical Psychopharmacology, 38(5), 460–466. https://doi.org/10.1097/JCP.0000000000000938 
  100. Mizuno, K., Tanaka, M., Nozaki, S., Mizuma, H., Ataka, S., Tahara, T., Sugino, T., Shirai, T., Kajimoto, Y., Kuratsune, H., Kajimoto, O., & Watanabe, Y. (2008). Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition, 24(4), 293–299. https://doi.org/10.1016/j.nut.2007.12.007 
  101. Moazen, M., Mazloom, Z., Ahmadi, A., Dabbaghmanesh, M. H., & Roosta, S. (2015). Effect of coenzyme Q10 on glycaemic control, oxidative stress and adiponectin in type 2 diabetes. Journal of the Pakistan Medical Association, 65(4), 404–408. https://www.ncbi.nlm.nih.gov/pubmed/25976576 
  102. Morisco, C., Trimarco, B., & Condorelli, M. (1993). Effect of coenzyme Q10 therapy in patients with congestive heart failure: A long-term multicenter randomized study. The Clinical Investigator, 71(8 Suppl), S134–S136. https://doi.org/10.1007/BF00226854 
  103. Mortensen, A. L., Rosenfeldt, F., & Filipiak, K. J. (2019). Effect of coenzyme Q10 in Europeans with chronic heart failure: A sub-group analysis of the Q-SYMBIO randomized double-blind trial. Cardiology Journal, 26(2), 147–156. https://doi.org/10.5603/CJ.a2019.0022 
  104. Mortensen, S. A., Rosenfeldt, F., Kumar, A., Dolliner, P., Filipiak, K. J., Pella, D., Alehagen, U., Steurer, G., Littarru, G. P., & Q-SYMBIO Study Investigators. (2014). The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: Results from Q-SYMBIO: A randomized double-blind trial. JACC. Heart Failure, 2(6), 641–649. https://doi.org/10.1016/j.jchf.2014.06.008 
  105. Mousavinejad, E., Ghaffari, M. A., Riahi, F., Hajmohammadi, M., Tiznobeyk, Z., & Mousavinejad, M. (2018). Coenzyme Q10 supplementation reduces oxidative stress and decreases antioxidant enzyme activity in children with autism spectrum disorders. Psychiatry Research, 265, 62–69. https://doi.org/10.1016/j.psychres.2018.03.061 
  106. Müller, T., Büttner, T., Gholipour, A. F., & Kuhn, W. (2003). Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neuroscience Letters, 341(3), 201–204. https://doi.org/10.1016/s0304-3940(03)00185-x 
  107. Munkholm, H., Hansen, H. H., & Rasmussen, K. (1999). Coenzyme Q10 treatment in serious heart failure. BioFactors, 9(2-4), 285–289. https://doi.org/10.1002/biof.5520090225 
  108. Nachvak, S. M., Alipour, B., Mahdavi, A. M., Aghdashi, M. A., Abdollahzad, H., Pasdar, Y., Samadi, M., & Mostafai, R. (2019). Effects of coenzyme Q10 supplementation on matrix metalloproteinases and DAS-28 in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled clinical trial. Clinical Rheumatology, 38(12), 3367–3374. https://doi.org/10.1007/s10067-019-04723-x 
  109. Nadjarzadeh, A., Sadeghi, M. R., Amirjannati, N., Vafa, M. R., Motevalian, S. A., Gohari, M. R., Akhondi, M. A., Yavari, P., & Shidfar, F. (2011). Coenzyme Q10 improves seminal oxidative defense but does not affect on semen parameters in idiopathic oligoasthenoteratozoospermia: A randomized double-blind, placebo controlled trial. Journal of Endocrinological Investigation, 34(8), e224–e228. https://doi.org/10.3275/7572 
  110. Nadjarzadeh, A., Shidfar, F., Amirjannati, N., Vafa, M. R., Motevalian, S. A., Gohari, M. R., Nazeri Kakhki, S. A., Akhondi, M. M., & Sadeghi, M. R. (2014). Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: A double-blind randomised clinical trial. Andrologia, 46(2), 177–183. https://doi.org/10.1111/and.12062 
  111. Nukui, K., Yamagishi, T., Miyawaki, H., Kettawan, A., Okamoto, T., & Sato, K. (2007). Comparison of uptake between PureSorb-Q40 and regular hydrophobic coenzyme Q10 in rats and humans after single oral intake. Journal of Nutritional Science and Vitaminology, 53(2), 187–190. https://doi.org/10.3177/jnsv.53.187 
  112. Okoli, G. N., Rabbani, R., Kashani, H. H., Wierzbowski, A. K., Neilson, C., Mansouri, B., Zarychanski, R., & Abou-Setta, A. M. (2019). Vitamins and minerals for migraine prophylaxis: A systematic review and meta-analysis. The Canadian Journal of Neurological Sciences, 46(2), 224–233. https://doi.org/10.1017/cjn.2018.394 
  113. Omar, M. I., Pal, R. P., Kelly, B. D., Bruins, H. M., Yuan, Y., Diemer, T., Krausz, C., Tournaye, H., Kopa, Z., Jungwirth, A., & Minhas, S. (2019). Benefits of empiric nutritional and medical therapy for semen parameters and pregnancy and live birth rates in couples with idiopathic infertility: A systematic review and meta-analysis. European Urology, 75(4), 615–625. https://doi.org/10.1016/j.eururo.2018.12.022 
  114. Orlando, P., Silvestri, S., Galeazzi, R., Antonicelli, R., Marcheggiani, F., Cirilli, I., Bacchetti, T., & Tiano, L. (2018). Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. Redox Report: Communications in Free Radical Research, 23(1), 136–145. https://doi.org/10.1080/13510002.2018.1472924 
  115. Parohan, M., Sarraf, P., Javanbakht, M. H., Ranji-Burachaloo, S., & Djalali, M. (2020). Effect of coenzyme Q10 supplementation on clinical features of migraine: A systematic review and dose-response meta-analysis of randomized controlled trials. Nutritional Neuroscience, 23(11), 868–875. https://doi.org/10.1080/1028415X.2019.1572940 
  116. Pravst, I., Rodríguez Aguilera, J. C., Cortes Rodriguez, A. B., Jazbar, J., Locatelli, I., Hristov, H., & Žmitek, K. (2020). Comparative bioavailability of different coenzyme q10 formulations in healthy elderly individuals. Nutrients, 12(3). https://doi.org/10.3390/nu12030784 
  117. Qu, H., Guo, M., Chai, H., Wang, W.-T., Gao, Z.-Y., & Shi, D.-Z. (2018). Effects of coenzyme Q10 on statin-induced myopathy: An updated meta-analysis of randomized controlled trials. Journal of the American Heart Association, 7(19), e009835. https://doi.org/10.1161/JAHA.118.009835 
  118. Rahmani, E., Jamilian, M., Samimi, M., Zarezade Mehrizi, M., Aghadavod, E., Akbari, E., Tamtaji, O. R., & Asemi, Z. (2018). The effects of coenzyme Q10 supplementation on gene expression related to insulin, lipid and inflammation in patients with polycystic ovary syndrome. Gynecological Endocrinology, 34(3), 217–222. https://doi.org/10.1080/09513590.2017.1381680 
  119. Raygan, F., Rezavandi, Z., Dadkhah Tehrani, S., Farrokhian, A., & Asemi, Z. (2016). The effects of coenzyme Q10 administration on glucose homeostasis parameters, lipid profiles, biomarkers of inflammation and oxidative stress in patients with metabolic syndrome. European Journal of Nutrition, 55(8), 2357–2364. https://doi.org/10.1007/s00394-015-1042-7 
  120. Rivara, M. B., Yeung, C. K., Robinson-Cohen, C., Phillips, B. R., Ruzinski, J., Rock, D., Linke, L., Shen, D. D., Ikizler, T. A., & Himmelfarb, J. (2017). Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: the coq10 biomarker trial. American Journal of Kidney Diseases, 69(3), 389–399. https://doi.org/10.1053/j.ajkd.2016.08.041 
  121. Rodríguez-Carrizalez, A. D., Castellanos-González, J. A., Martínez-Romero, E. C., Miller-Arrevillaga, G., Pacheco-Moisés, F. P., Román-Pintos, L. M., & Miranda-Díaz, A. G. (2016). The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy: A phase IIa, randomized, double-blind, and placebo-controlled study. Redox Report: Communications in Free Radical Research, 21(4), 155–163. https://doi.org/10.1179/1351000215Y.0000000040 
  122. Rodríguez-Carrizalez, A. D., Castellanos-González, J. A., Martínez-Romero, E. C., Miller-Arrevillaga, G., Román-Pintos, L. M., Pacheco-Moisés, F. P., & Miranda-Díaz, A. G. (2016). The antioxidant effect of ubiquinone and combined therapy on mitochondrial function in blood cells in non-proliferative diabetic retinopathy: A randomized, double-blind, phase IIa, placebo-controlled study. Redox Report: Communications in Free Radical Research, 21(4), 190–195. https://doi.org/10.1179/1351000215Y.0000000032 
  123. Rosenfeldt, F., Hilton, D., Pepe, S., & Krum, H. (2003). Systematic review of effect of coenzyme Q10 in physical exercise, hypertension and heart failure. BioFactors, 18(1-4), 91–100. https://doi.org/10.1002/biof.5520180211 
  124. Rosenfeldt, F. L., Haas, S. J., Krum, H., Hadj, A., Ng, K., Leong, J.-Y., & Watts, G. F. (2007). Coenzyme Q10 in the treatment of hypertension: A meta-analysis of the clinical trials. Journal of Human Hypertension, 21(4), 297–306. https://doi.org/10.1038/sj.jhh.1002138 
  125. Rosenfeldt, F., Marasco, S., Lyon, W., Wowk, M., Sheeran, F., Bailey, M., Esmore, D., Davis, B., Pick, A., Rabinov, M., Smith, J., Nagley, P., & Pepe, S. (2005). Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. The Journal of Thoracic and Cardiovascular Surgery, 129(1), 25–32. https://doi.org/10.1016/j.jtcvs.2004.03.034 
  126. Ryo, K., Ito, A., Takatori, R., Tai, Y., Arikawa, K., Seido, T., Yamada, T., Shinpo, K., Tamaki, Y., Fujii, K., Yamamoto, Y., & Saito, I. (2011). Effects of coenzyme Q10 on salivary secretion. Clinical Biochemistry, 44(8-9), 669–674. https://doi.org/10.1016/j.clinbiochem.2011.03.029 
  127. Safarinejad, M. R. (2009). Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. The Journal of Urology, 182(1), 237–248. https://doi.org/10.1016/j.juro.2009.02.121 
  128. Safarinejad, M. R. (2010). Safety and efficacy of coenzyme Q10 supplementation in early chronic Peyronie’s disease: A double-blind, placebo-controlled randomized study. International Journal of Impotence Research, 22(5), 298–309. https://doi.org/10.1038/ijir.2010.20 
  129. Safarinejad, M. R., Safarinejad, S., Shafiei, N., & Safarinejad, S. (2012). Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: A double-blind, placebo controlled, randomized study. The Journal of Urology, 188(2), 526–531. https://doi.org/10.1016/j.juro.2012.03.131 
  130. Sahebkar, A., Simental-Mendía, L. E., Stefanutti, C., & Pirro, M. (2016). Supplementation with coenzyme Q10 reduces plasma lipoprotein(a) concentrations but not other lipid indices: A systematic review and meta-analysis. Pharmacological Research, 105, 198–209. https://doi.org/10.1016/j.phrs.2016.01.030 
  131. Salami, A., Mora, R., Dellepiane, M., Manini, G., Santomauro, V., Barettini, L., & Guastini, L. (2010). Water-soluble coenzyme Q10 formulation (Q-TER(®)) in the treatment of presbycusis. Acta Oto-Laryngologica, 130(10), 1154–1162. https://doi.org/10.3109/00016481003727590 
  132. Salas-Huetos, A., Rosique-Esteban, N., Becerra-Tomás, N., Vizmanos, B., Bulló, M., & Salas-Salvadó, J. (2018). The effect of nutrients and dietary supplements on sperm quality parameters: A systematic review and meta-analysis of randomized clinical trials. Advances in Nutrition, 9(6), 833–848. https://doi.org/10.1093/advances/nmy057 
  133. Samimi, M., Zarezade Mehrizi, M., Foroozanfard, F., Akbari, H., Jamilian, M., Ahmadi, S., & Asemi, Z. (2017). The effects of coenzyme Q10 supplementation on glucose metabolism and lipid profiles in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clinical Endocrinology, 86(4), 560–566. https://doi.org/10.1111/cen.13288 
  134. Sander, S., Coleman, C. I., Patel, A. A., Kluger, J., & White, C. M. (2006). The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. Journal of Cardiac Failure, 12(6), 464–472. https://doi.org/10.1016/j.cardfail.2006.03.007 
  135. Sándor, P. S., Di Clemente, L., Coppola, G., Saenger, U., Fumal, A., Magis, D., Seidel, L., Agosti, R. M., & Schoenen, J. (2005). Efficacy of coenzyme Q10 in migraine prophylaxis: A randomized controlled trial. Neurology, 64(4), 713–715. https://doi.org/10.1212/01.WNL.0000151975.03598.ED 
  136. Sangsefidi, Z. S., Yaghoubi, F., Hajiahmadi, S., & Hosseinzadeh, M. (2020). The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Science & Nutrition, 8(4), 1766–1776. https://doi.org/10.1002/fsn3.1492 
  137. Sanoobar, M., Dehghan, P., Khalili, M., Azimi, A., & Seifar, F. (2016). Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutritional Neuroscience, 19(3), 138–143. https://doi.org/10.1179/1476830515Y.0000000002 
  138. Sanoobar, M., Eghtesadi, S., Azimi, A., Khalili, M., Jazayeri, S., & Reza Gohari, M. (2013). Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis. The International Journal of Neuroscience, 123(11), 776–782. https://doi.org/10.3109/00207454.2013.801844 
  139. Sanoobar, M., Eghtesadi, S., Azimi, A., Khalili, M., Khodadadi, B., Jazayeri, S., Gohari, M. R., & Aryaeian, N. (2015). Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: A double blind, placebo, controlled randomized clinical trial. Nutritional Neuroscience, 18(4), 169–176. https://doi.org/10.1179/1476830513Y.0000000106 
  140. Sarmiento, A., Diaz-Castro, J., Pulido-Moran, M., Moreno-Fernandez, J., Kajarabille, N., Chirosa, I., Guisado, I. M., Javier Chirosa, L., Guisado, R., & Ochoa, J. J. (2016). Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: A randomized trial. BioFactors, 42(6), 612–622. https://doi.org/10.1002/biof.1297 
  141. Sawaddiruk, P., Apaijai, N., Paiboonworachat, S., Kaewchur, T., Kasitanon, N., Jaiwongkam, T., Kerdphoo, S., Chattipakorn, N., & Chattipakorn, S. C. (2019). Coenzyme Q10 supplementation alleviates pain in pregabalin-treated fibromyalgia patients via reducing brain activity and mitochondrial dysfunction. Free Radical Research, 53(8), 901–909. https://doi.org/10.1080/10715762.2019.1645955 
  142. Shao, L., Ma, A., Figtree, G., & Zhang, P. (2016). Combination therapy with coenzyme q10 and trimetazidine in patients with acute viral myocarditis. Journal of Cardiovascular Pharmacology, 68(2), 150–154. https://doi.org/10.1097/FJC.0000000000000396 
  143. Sharifi, N., Tabrizi, R., Moosazadeh, M., Mirhosseini, N., Lankarani, K. B., Akbari, M., Chamani, M., Kolahdooz, F., & Asemi, Z. (2018). The effects of coenzyme Q10 supplementation on lipid profiles among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Current Pharmaceutical Design, 24(23), 2729–2742. https://doi.org/10.2174/1381612824666180406104516 
  144. Shojaei, M., Djalali, M., Khatami, M., Siassi, F., & Eshraghian, M. (2011). Effects of carnitine and coenzyme Q10 on lipid profile and serum levels of lipoprotein(a) in maintenance hemodialysis patients on statin therapy. Iranian Journal of Kidney Diseases, 5(2), 114–118. https://www.ncbi.nlm.nih.gov/pubmed/21368390 
  145. Shults, C. W., Oakes, D., Kieburtz, K., Beal, M. F., Haas, R., Plumb, S., Juncos, J. L., Nutt, J., Shoulson, I., Carter, J., Kompoliti, K., Perlmutter, J. S., Reich, S., Stern, M., Watts, R. L., Kurlan, R., Molho, E., Harrison, M., Lew, M., & Parkinson Study Group. (2002). Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Archives of Neurology, 59(10), 1541–1550. https://doi.org/10.1001/archneur.59.10.1541 
  146. Singh, R. B., Khanna, H. K., & Niaz, M. A. (2000). Randomized, double-blind placebo-controlled trial of coenzyme Q10 in chronic renal failure: Discovery of a new role. Journal of Nutritional & Environmental Medicine, 10(4), 281–288. https://doi.org/10.1080/13590840020013266 
  147. Singh, R. B., Kumar, A., Niaz, M. A., Singh, R. G., Gujrati, S., Singh, V. P., Singh, M., Singh, U. P., Taneja, C., & Rastogi, S. S. (2003). Randomized, double-blind, placebo-controlled trial of coenzyme Q10 in patients with end-stage renal failure. Journal of Nutritional & Environmental Medicine, 13(1), 13–22. https://doi.org/10.1080/1359084031000095002 
  148. Singh, R. B., Neki, N. S., Kartikey, K., Pella, D., Kumar, A., Niaz, M. A., & Thakur, A. S. (2003). Effect of coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarction. Molecular and Cellular Biochemistry, 246(1-2), 75–82. https://www.ncbi.nlm.nih.gov/pubmed/12841346 
  149. Singh, R. B., & Niaz, M. A. (1999). Serum concentration of lipoprotein(a) decreases on treatment with hydrosoluble coenzyme Q10 in patients with coronary artery disease: Discovery of a new role. International Journal of Cardiology, 68(1), 23–29. https://doi.org/10.1016/s0167-5273(98)00323-4 
  150. Singh, R. B., Niaz, M. A., Kumar, A., Sindberg, C. D., Moesgaard, S., & Littarru, G. P. (2005). Effect on absorption and oxidative stress of different oral Coenzyme Q10 dosages and intake strategy in healthy men. BioFactors, 25(1-4), 219–224. https://doi.org/10.1002/biof.5520250127 
  151. Singh, R. B., Niaz, M. A., Rastogi, S. S., Shukla, P. K., & Thakur, A. S. (1999). Effect of hydrosoluble coenzyme Q10 on blood pressures and insulin resistance in hypertensive patients with coronary artery disease. Journal of Human Hypertension, 13(3), 203–208. https://doi.org/10.1038/sj.jhh.1000778 
  152. Singh, R. B., Wander, G. S., Rastogi, A., Shukla, P. K., Mittal, A., Sharma, J. P., Mehrotra, S. K., Kapoor, R., & Chopra, R. K. (1998). Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovascular Drugs and Therapy, 12(4), 347–353. https://doi.org/10.1023/a:1007764616025 
  153. Skarlovnik, A., Janić, M., Lunder, M., Turk, M., & Šabovič, M. (2014). Coenzyme Q10 supplementation decreases statin-related mild-to-moderate muscle symptoms: A randomized clinical study. Medical Science Monitor, 20, 2183–2188. https://doi.org/10.12659/MSM.890777 
  154. Slater, S. K., Nelson, T. D., Kabbouche, M. A., LeCates, S. L., Horn, P., Segers, A., Manning, P., Powers, S. W., & Hershey, A. D. (2011). A randomized, double-blinded, placebo-controlled, crossover, add-on study of coenzyme Q10 in the prevention of pediatric and adolescent migraine. Cephalalgia: An International Journal of Headache, 31(8), 897–905. https://doi.org/10.1177/0333102411406755 
  155. Soja, A. M., & Mortensen, S. A. (1997). Treatment of congestive heart failure with coenzyme Q10 illuminated by meta-analyses of clinical trials. Molecular Aspects of Medicine, 18, S159–S168. https://doi.org/10.1016/s0098-2997(97)00042-3 
  156. Soltani, R., Alikiaie, B., Shafiee, F., Amiri, H., & Mousavi, S. (2020). Coenzyme Q10 improves the survival and reduces inflammatory markers in septic patients. Bratislavske Lekarske Listy, 121(2), 154–158. https://doi.org/10.4149/BLL_2020_022 
  157. Stamelou, M., Reuss, A., Pilatus, U., Magerkurth, J., Niklowitz, P., Eggert, K. M., Krisp, A., Menke, T., Schade-Brittinger, C., Oertel, W. H., & Höglinger, G. U. (2008). Short-term effects of coenzyme Q10 in progressive supranuclear palsy: A randomized, placebo-controlled trial. Movement Disorders: Official Journal of the Movement Disorder Society, 23(7), 942–949. https://doi.org/10.1002/mds.22023 
  158. Stojanović, M., & Radenković, M. (2017). A meta-analysis of randomized and placebo-controlled clinical trials suggests that coenzyme Q10 at low dose improves glucose and HbA1c levels. Nutrition Research, 38, 1–12. https://doi.org/10.1016/j.nutres.2016.12.001 
  159. Suksomboon, N., Poolsup, N., & Juanak, N. (2015). Effects of coenzyme Q10 supplementation on metabolic profile in diabetes: A systematic review and meta-analysis. Journal of Clinical Pharmacy and Therapeutics, 40(4), 413–418. https://doi.org/10.1111/jcpt.12280 
  160. Tabrizi, R., Akbari, M., Sharifi, N., Lankarani, K. B., Moosazadeh, M., Kolahdooz, F., Taghizadeh, M., & Asemi, Z. (2018). The effects of coenzyme Q10 supplementation on blood pressures among patients with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. High Blood Pressure & Cardiovascular Prevention, 25(1), 41–50. https://doi.org/10.1007/s40292-018-0247-2 
  161. Teran, E., Hernandez, I., Nieto, B., Tavara, R., Ocampo, J. E., & Calle, A. (2009). Coenzyme Q10 supplementation during pregnancy reduces the risk of pre-eclampsia. International Journal of Gynaecology and Obstetrics, 105(1), 43–45. https://doi.org/10.1016/j.ijgo.2008.11.033 
  162. Tiano, L., Belardinelli, R., Carnevali, P., Principi, F., Seddaiu, G., & Littarru, G. P. (2007). Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: A double-blind, randomized controlled study. European Heart Journal, 28(18), 2249–2255. https://doi.org/10.1093/eurheartj/ehm267 
  163. Ullmann, U., Metzner, J., Schulz, C., Perkins, J., & Leuenberger, B. (2005). A new Coenzyme Q10 tablet-grade formulation (all-Q) is bioequivalent to Q-Gel and both have better bioavailability properties than Q-SorB. Journal of Medicinal Food, 8(3), 397–399. https://doi.org/10.1089/jmf.2005.8.397 
  164. Ushikoshi-Nakayama, R., Ryo, K., Yamazaki, T., Kaneko, M., Sugano, T., Ito, Y., Matsumoto, N., & Saito, I. (2019). Effect of gummy candy containing ubiquinol on secretion of saliva: A randomized, double-blind, placebo-controlled parallel-group comparative study and an in vitro study. PloS One, 14(4), e0214495. https://doi.org/10.1371/journal.pone.0214495 
  165. van Diemen, M. P. J., Berends, C. L., Akram, N., Wezel, J., Teeuwisse, W. M., Mik, B. G., Kan, H. E., Webb, A., Beenakker, J. W. M., & Groeneveld, G. J. (2017). Validation of a pharmacological model for mitochondrial dysfunction in healthy subjects using simvastatin: A randomized placebo-controlled proof-of-pharmacology study. European Journal of Pharmacology, 815, 290–297. https://doi.org/10.1016/j.ejphar.2017.09.031 
  166. Watts, G. F., Playford, D. A., Croft, K. D., Ward, N. C., Mori, T. A., & Burke, V. (2002). Coenzyme Q(10) improves endothelial dysfunction of the brachial artery in Type II diabetes mellitus. Diabetologia, 45(3), 420–426. https://doi.org/10.1007/s00125-001-0760-y 
  167. Xu, Y., Nisenblat, V., Lu, C., Li, R., Qiao, J., Zhen, X., & Wang, S. (2018). Pretreatment with coenzyme Q10 improves ovarian response and embryo quality in low-prognosis young women with decreased ovarian reserve: a randomized controlled trial. Reproductive Biology and Endocrinology, 16(1), 29. https://doi.org/10.1186/s12958-018-0343-0 
  168. Yen, C.-H., Chu, Y.-J., Lee, B.-J., Lin, Y.-C., & Lin, P.-T. (2018). Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: A double-blind, randomised, placebo-controlled trial. The British Journal of Nutrition, 120(1), 57–63. https://doi.org/10.1017/S0007114518001241 
  169. Ylikoski, T., Piirainen, J., Hanninen, O., & Penttinen, J. (1997). The effect of coenzyme Q10 on the exercise performance of cross-country skiers. Molecular Aspects of Medicine, 18, S283–S290. https://doi.org/10.1016/s0098-2997(97)00038-1 
  170. Yoo, J.-Y., & Yum, K.-S. (2018). Effect of coenzyme Q10 on insulin resistance in korean patients with prediabetes: A pilot single-center, randomized, double-blind, placebo-controlled study. BioMed Research International, 2018, 1613247. https://doi.org/10.1155/2018/1613247 
  171. Yoritaka, A., Kawajiri, S., Yamamoto, Y., Nakahara, T., Ando, M., Hashimoto, K., Nagase, M., Saito, Y., & Hattori, N. (2015). Randomized, double-blind, placebo-controlled pilot trial of reduced coenzyme Q10 for Parkinson’s disease. Parkinsonism & Related Disorders, 21(8), 911–916. https://doi.org/10.1016/j.parkreldis.2015.05.022 
  172. Yuan, Y., Tian, Y., & Yue, T. (2012). Improvement of coenzyme Q10 production: Mutagenesis induced by high hydrostatic pressure treatment and optimization of fermentation conditions. Journal of Biomedicine & Biotechnology, 2012, 607329. https://doi.org/10.1155/2012/607329 
  173. Zaki, N. M. (2016). Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Delivery, 23(6), 1868–1881. https://doi.org/10.3109/10717544.2014.993747 
  174. Zeng, Z., Li, Y., Lu, S., Huang, W., & Di, W. (2019). Efficacy of CoQ10 as supplementation for migraine: A meta-analysis. Acta Neurologica Scandinavica, 139(3), 284–293. https://doi.org/10.1111/ane.13051 
  175. Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of coenzyme Q10 on markers of inflammation: a systematic review and meta-analysis. PloS One, 12(1), e0170172. https://doi.org/10.1371/journal.pone.0170172 
  176. Zhang, P., Yang, C., Guo, H., Wang, J., Lin, S., Li, H., Yang, Y., & Ling, W. (2018). Treatment of coenzyme Q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individuals. Journal of Clinical Lipidology, 12(2), 417–427.e5. https://doi.org/10.1016/j.jacl.2017.12.006 
  177. Zhang, S.-Y., Yang, K.-L., Zeng, L.-T., Wu, X.-H., & Huang, H.-Y. (2018). Effectiveness of coenzyme Q10 supplementation for type 2 diabetes mellitus: a systematic review and meta-analysis. International Journal of Endocrinology, 2018, 6484839. https://doi.org/10.1155/2018/6484839 
  178. Zhang, X., Shi, Z., Liu, Q., Quan, H., & Cheng, X. (2019). Effects of coenzyme Q10 intervention on diabetic kidney disease: A systematic review and meta-analysis. Medicine, 98(24), e15850. https://doi.org/10.1097/MD.0000000000015850 
  179. Zhang, Y., Liu, J., Chen, X.-Q., & Oliver Chen, C.-Y. (2018). Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men. Food & Function, 9(11), 5653–5659. https://doi.org/10.1039/c8fo00971f 
  180. Zhang, Y., Zhang, C., Shu, J., Guo, J., Chang, H.-M., Leung, P. C. K., Sheng, J.-Z., & Huang, H. (2020). Adjuvant treatment strategies in ovarian stimulation for poor responders undergoing IVF: A systematic review and network meta-analysis. Human Reproduction Update, 26(2), 247–263. https://doi.org/10.1093/humupd/dmz046 
  181. Zhao, Q., Kebbati, A. H., Zhang, Y., Tang, Y., Okello, E., & Huang, C. (2015). Effect of coenzyme Q10 on the incidence of atrial fibrillation in patients with heart failure. Journal of Investigative Medicine, 63(5), 735–739. https://doi.org/10.1097/JIM.0000000000000202 
  182. Zhu, Z.-G., Sun, M.-X., Zhang, W.-L., Wang, W.-W., Jin, Y.-M., & Xie, C.-L. (2017). The efficacy and safety of coenzyme Q10 in Parkinson’s disease: A meta-analysis of randomized controlled trials. Neurological Sciences, 38(2), 215–224. https://doi.org/10.1007/s10072-016-2757-9 
  183. Zmitek, J., Smidovnik, A., Fir, M., Prosek, M., Zmitek, K., Walczak, J., & Pravst, I. (2008). Relative bioavailability of two forms of a novel water-soluble coenzyme Q10. Annals of Nutrition & Metabolism, 52(4), 281–287. https://doi.org/10.1159/000129661 
  184. Žmitek, K., Pogačnik, T., Mervic, L., Žmitek, J., & Pravst, I. (2017). The effect of dietary intake of coenzyme Q10 on skin parameters and condition: Results of a randomised, placebo-controlled, double-blind study. BioFactors, 43(1), 132–140. https://doi.org/10.1002/biof.1316