What is it?


Calcium is an essential mineral that is commonly used to promote healthy bones and teeth. It is often found in dairy products, though various nuts, seeds, leafy greens, and cruciferous vegetables also contain calcium. Daily requirements for calcium vary by age and whether or not the individual is pregnant or lactating. Most guidelines indicate that individuals older than 19 years of age require between 1,000 to 1,300 mg per day. (37) In infants (0 to 12 months), the National Institute of Health recommends 200 to 260 mg as an adequate intake, whereas the recommended dietary allowance (RDA) rises to 700 mg and 1,000 mg in children 1 to 3 and 4 to 8 years of age, respectively. Older children and adolescents (ages 9 to 18) are recommended to consume 1,300 mg per day. (108

In healthy individuals, approximately 99% of calcium is stored in bone, while circulating blood levels are maintained between 8.8 to 10.4 mg/dL (2.2–2.6 mmol/L). (142) The homeostatic-monitoring of calcium levels acts to regulate brain, cardiovascular, hormonal, muscular, nerve, and skeletal functions, (96)(163) and ensures that the intake of calcium from the diet or from supplements produces little variability in circulating levels. (135) However, calcium supplementation may be indicated in populations at risk for hypocalcemia due to low or non-existent intake from the diet or for individuals taking certain medications. Considering average intakes in Western countries are under the RDA at approximately 700 to 800 mg per day, (147) a proportion of the population may safely benefit from supplementation if increased dietary intake is unrealistic. In general, long-term supplementation of up to 500 mg per day of calcium may be most effectively and safely used with a meal, in combination with vitamin D, and when the dietary intake of calcium does not exceed 800 mg per day. (26) Higher divided doses may be required if intake is still below the recommended levels.

Please note that while calcium is often combined with other ingredients such as vitamin D or magnesium, this review will only detail evidence for the use of calcium supplementation on its own. It should be noted that a significant amount of evidence (e.g., calcium plus vitamin D in the treatment of osteoporosis) is omitted from this ingredient review.

Main uses

Blood pressure regulation
Bone health
Hypocalcemia and hyperphosphatemia regulation
Prenatal health


Calcium carbonate
Contains 40% elemental calcium
Most commonly used form, and regularly used in research
Least expensive, but requires stomach acid to be properly absorbed; should be taken with a meal to reduce the likelihood of adverse GI events (68)(144)(163)
It is unclear whether calcium carbonate provides better, (85) lesser, (86) or equivalent (20) effects on the suppression of bone resorption markers than calcium citrate when taken with a meal, but it does appear to be less effective when taken on an empty stomach (at bedtime) than calcium citrate-malate. (44)
Calcium citrate
Contains 21% elemental calcium
Commonly used form and regularly used in research
More expensive than calcium carbonate, but does not need to be taken with a meal; should be used in people using H2 blockers or proton pump inhibitors, or in individuals with achlorhydria (144)(163)
Provides better absorption on an empty stomach and with meals than calcium carbonate, gluconolactate-carbonate, and tricalcium phosphate (60)(64)(70) (71) (116) (124) (133) (155)
Some studies show equivalent bioavailability to calcium carbonate when taken with food (67)(68) or in a fasted state. (46)(139)
Calcium lysinate
Contains 30% elemental calcium
Provides greater bioavailability than calcium carbonate or calcium citrate-malate (138)
Calcium chloride
Contains 27% elemental calcium
Used intravenously to treat hypocalcemia (163) as it may provide greater bioavailability than intravenous calcium gluconate (21)
Calcium fumarate
Contains 26% elemental calcium
Provides equal bioavailability to calcium gluconate (110)
Calcium acetate
Contains 25% elemental calcium
Provides similar bioavailability to calcium carbonate, calcium citrate, calcium gluconate, and calcium lactate in a fasted state (139)
May reduce serum phosphorus to a greater extent than calcium carbonate in Px with chronic kidney disease (162)
Calcium hydroxyapatite (microcrystalline hydroxyapatite complex, MCHC; ossein-hydroxyapatite complex, OHC)
Contains 21% elemental calcium; derived from animal bone and is therefore not appropriate for vegetarians or vegans
A complex containing calcium, phosphorus, and bone metabolism proteins including osteocalcin, type I collagen, insulin growth factor type I and II, & transforming growth factor-ꞵ (TGFꞵ).
A meta-analysis shows that calcium hydroxyapatite users had 1.02% higher BMD (mainly via an attenuation of bone loss) than calcium carbonate. (30)
Comparative studies published since the release of the above meta-analysis have continued to support this relationship, with a similar if not slightly better (~5% difference) adverse effect profile; (29)(36) calcium hydroxyapatite may provide a greater analgesic effect in osteopenia than calcium carbonate. (31)
Calcium hydroxyapatite increased serum calcium to a lesser extent than calcium carbonate or citrate, but produced greater phosphate and calcium-phosphate concentrations. However, it also resulted in equivalent reductions in bone resorption markers and bone turnover. (20) Calcium citrate, carbonate, pidolate, and gluconolactate reduced PTH to a greater extent than calcium hydroxyapatite. (46)
Calcium hydroxyapatite provided similar benefits to bone turnover (statistically equivalent) as tricalcium phosphate, but may provide a small clinical advantage for BMD over tricalcium phosphate. (1)
Calcium pidolate
Contains 14% elemental calcium
Provides equivalent bioavailability to calcium carbonate, citrate, lactate-gluconate, and lactate gluconate-carbonate, but less effectively suppressed PTH than citrate or carbonate in a fasted state (46)(56)
Calcium lactate
Contains 13% elemental calcium
Provides similar bioavailability to calcium carbonate, calcium citrate, calcium gluconate, calcium lactate, and calcium acetate in a fasted state (139)
Calcium lactate gluconate
Contains 12% elemental calcium
Provides similar bioavailability to calcium carbonate, citrate, and pidolate, but lower PTH suppression than carbonate and citrate in a fasted state (46)
Calcium citrate-malate
Contains 11% elemental calcium
Provides better bioavailability than calcium carbonate and tricalcium phosphate-lactate (69)(103)
Calcium gluconate
Contains 9% elemental calcium
Provides similar bioavailability to calcium carbonate, calcium citrate, calcium fumarate, calcium lactate, and calcium acetate in a fasted state (110)(139)(164)
Other forms without comparative evidence
Calcium phosphate: contains 38% elemental calcium
Calcium aspartate: contains 23% elemental calcium
Calcium malate: contains 23% elemental calcium
Calcium glycinate: contains 21% elemental calcium
Calcium butyrate: contains 19% elemental calcium
Calcium-D-glucarate: contains 16% elemental calcium
Calcium caprylate: contains 12% elemental calcium
Calcium undecylenate: contains 10% elemental calcium
Calcium ascorbate: contains 9% elemental calcium
Calcium folinate: contains 8% elemental calcium
Calcium pantothenate: contains 8% elemental calcium

Dosing & administration

Adverse effects

Calcium supplementation may induce gastrointestinal-related effects. Supplementation with calcium increased the relative risk of constipation, cramping, bloating, diarrhea, pain, or other symptoms by 43 to 47% compared with placebo. (94)(117)

It should be noted that controversy related to whether or not calcium supplementation increases the risk of cardiovascular events, fractures, or kidney stones exists. (12)(34)(150) Some analyses indicate that supplementation increases the risk of cardiovascular events, (15)(16)(95)(165)(167) while others do not. (7)(35)(93)(161) Similarly, an increased risk for kidney stones has been observed in some analyses, (81) but not in others. (28)(83

Overall, supplementation with calcium may need to be more closely monitored to avoid unnecessary use in excess of recommended dietary intakes to reduce the risk of negative outcomes or adverse events. (150) In general, total daily intake of calcium (from diet and supplements) should not exceed the tolerable upper intakes levels of 2,000 to 2,500 mg per day to reduce the risk of adverse cardiovascular outcomes, (35)(88) as well as to avoid reducing the uptake of other nutrients such as iron, zinc, or phosphorus. (99)(144

Calcium is also one of the most documented nutrients with interactions with other drugs. (156) Detailing these interactions is outside the scope of this review, but healthcare practitioners should evaluate the risks and benefits of adding calcium supplements to a treatment plan containing other pharmaceuticals. 



  • The body can absorb up to 500 mg of calcium at a time, with very little further absorption with higher doses. (66)
  • The average absorption of calcium intake is ~25%; (79) however, absorption can be highly variable (e.g., varying between 15 to 58% in healthy women). (18)
  • Several factors can influence calcium absorption; estrogen deficiencies and fibre intake (reducing intestinal transit time) may reduce absorption, while increased absorption may occur with an adequate vitamin D status or when supplementation is taken with food (increasing transit time). (18)
  • While adding vitamin D to improve calcium absorption is common practice, there was no better or very little improvement in calcium absorption with the addition of vitamin D in some trials. (58)(74)(105)
  • The majority (95%) of calcium is absorbed in the duodenum and proximal jejunum via saturable active transport (limiting large single amounts from being absorbed). (18)
  • Approximately 5% is absorbed via passive diffusion, and absorption occurs throughout the entire intestine. (18)
  • Intake of calcium from dairy products, mineral waters, or supplements produce equivalent bioavailability. (14)(61)(74)(105)


  • Approximately 99% is stored in skeletal tissue and fractional amounts circulate in the blood or are found in soft tissues. (96)(142)
  • The average adult stores between one to two kilograms of calcium. (18)


  • In a state where serum-free calcium levels are low, reduced calcium-sensing receptor activity in the parathyroid gland stimulates secretion of parathyroid hormone (PTH).
  • PTH stimulates PTH receptors in the kidney to reabsorb calcium.
  • PTH stimulates 25-hydroxyvitamin D 1α hydroxylase to convert vitamin D to calcitriol, which increases intestinal calcium levels.
  • PTH also stimulates resorption of calcium from bone.
  • These actions ultimately increase calcium levels in the blood and provide negative feedback to reduce further parathyroid gland activity.
  • In a state where serum-free calcium levels are high, increased calcium-sensing receptor activity inhibits the release of PTH (reducing the above effects) and stimulates the thyroid gland to secrete calcitonin.
  • Calcitonin reduces intestinal absorption and renal reabsorption of calcium and increases calcium bone deposition, thereby reducing circulating calcium levels. (96)(142)


  • On average, 22% of calcium is lost in urine and 75% in feces, though some can be lost via the skin, hair, and sweat. (79)
  • Between 100 to 250 mg of calcium can be lost in the urine, and 100 to 200 mg is excreted in the feces every day. (18)
  • Estrogen deficiencies and caffeine can also increase calcium excretion. (18)
  1. Albertazzi, P., Steel, S. A., Howarth, E. M., & Purdie, D. W. (2004). Comparison of the effects of two different types of calcium supplementation on markers of bone metabolism in a postmenopausal osteopenic population with low calcium intake: A double-blind placebo-controlled trial. Climacteric: The Journal of the International Menopause Society, 7(1), 33–40. https://doi.org/10.1080/13697130310001651454 
  2. Alhefdhi, A., Mazeh, H., & Chen, H. (2013). Role of postoperative vitamin D and/or calcium routine supplementation in preventing hypocalcemia after thyroidectomy: A systematic review and meta-analysis. The Oncologist, 18(5), 533–542. https://doi.org/10.1634/theoncologist.2012-0283 
  3. Alvir, J. M., & Thys-Jacobs, S. (1991). Premenstrual and menstrual symptom clusters and response to calcium treatment. Psychopharmacology Bulletin, 27(2), 145–148. https://www.ncbi.nlm.nih.gov/pubmed/1924661 
  4. An, L.-B., Li, W.-T., Xie, T.-N., Peng, X., Li, B., Xie, S.-H., Xu, J., Zhou, X.-H., & Guo, S.-N. (2015). Calcium supplementation reducing the risk of hypertensive disorders of pregnancy and related problems: A meta-analysis of multicentre randomized controlled trials. International Journal of Nursing Practice, 21(2), 19–31. https://doi.org/10.1111/ijn.12171 
  5. Arab, A., Rafie, N., Askari, G., & Taghiabadi, M. (2020). Beneficial role of calcium in premenstrual syndrome: A systematic review of current literature. International Journal of Preventive Medicine, 11, 156. https://doi.org/10.4103/ijpvm.IJPVM_243_19 
  6. Asemi, Z., Foroozanfard, F., Hashemi, T., Bahmani, F., Jamilian, M., & Esmaillzadeh, A. (2015). Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clinical Nutrition, 34(4), 586–592. https://doi.org/10.1016/j.clnu.2014.09.015 
  7. Asemi, Z., Saneei, P., Sabihi, S.-S., Feizi, A., & Esmaillzadeh, A. (2015). Total, dietary, and supplemental calcium intake and mortality from all-causes, cardiovascular disease, and cancer: A meta-analysis of observational studies. Nutrition, Metabolism, and Cardiovascular Diseases, 25(7), 623–634. https://doi.org/10.1016/j.numecd.2015.03.008 
  8. Bass, S. L., Naughton, G., Saxon, L., Iuliano-Burns, S., Daly, R., Briganti, E. M., Hume, C., & Nowson, C. (2007). Exercise and calcium combined results in a greater osteogenic effect than either factor alone: A blinded randomized placebo-controlled trial in boys. Journal of Bone and Mineral Research, 22(3), 458–464. https://doi.org/10.1359/jbmr.061201 
  9. Belizán, J. M., Villar, J., Bergel, E., del Pino, A., Di Fulvio, S., Galliano, S. V., & Kattan, C. (1997). Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: Follow up of a randomised controlled trial. BMJ, 315(7103), 281–285. https://doi.org/10.1136/bmj.315.7103.281 
  10. Belizán, J. M., Villar, J., Gonzalez, L., Campodonico, L., & Bergel, E. (1991). Calcium supplementation to prevent hypertensive disorders of pregnancy. The New England Journal of Medicine, 325(20), 1399–1405. https://doi.org/10.1056/NEJM199111143252002 
  11. Bellantone, R., Lombardi, C. P., Raffaelli, M., Boscherini, M., Alesina, P. F., De Crea, C., Traini, E., & Princi, P. (2002). Is routine supplementation therapy (calcium and vitamin D) useful after total thyroidectomy? Surgery, 132(6), 1109–1112. https://doi.org/10.1067/msy.2002.128617 
  12. Bischoff-Ferrari, H. A., Dawson-Hughes, B., Baron, J. A., Burckhardt, P., Li, R., Spiegelman, D., Specker, B., Orav, J. E., Wong, J. B., Staehelin, H. B., O’Reilly, E., Kiel, D. P., & Willett, W. C. (2007). Calcium intake and hip fracture risk in men and women: A meta-analysis of prospective cohort studies and randomized controlled trials. The American Journal of Clinical Nutrition, 86(6), 1780–1790. https://doi.org/10.1093/ajcn/86.5.1780 
  13. Bischoff-Ferrari, H. A., Rees, J. R., Grau, M. V., Barry, E., Gui, J., & Baron, J. A. (2008). Effect of calcium supplementation on fracture risk: A double-blind randomized controlled trial. The American Journal of Clinical Nutrition, 87(6), 1945–1951. https://doi.org/10.1093/ajcn/87.6.1945 
  14. Bohmer, H., Müller, H., & Resch, K. L. (2000). Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporosis International, 11(11), 938–943. https://doi.org/10.1007/s001980070032 
  15. Bolland, M. J., Avenell, A., Baron, J. A., Grey, A., MacLennan, G. S., Gamble, G. D., & Reid, I. R. (2010). Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: Meta-analysis. BMJ , 341, c3691. https://doi.org/10.1136/bmj.c3691 
  16. Bolland, M. J., Barber, P. A., Doughty, R. N., Mason, B., Horne, A., Ames, R., Gamble, G. D., Grey, A., & Reid, I. R. (2008). Vascular events in healthy older women receiving calcium supplementation: Randomised controlled trial. BMJ, 336(7638), 262–266. https://doi.org/10.1136/bmj.39440.525752.BE 
  17. Bolland, M. J., Leung, W., Tai, V., Bastin, S., Gamble, G. D., Grey, A., & Reid, I. R. (2015). Calcium intake and risk of fracture: Systematic review. BMJ, 351, h4580. https://doi.org/10.1136/bmj.h4580 
  18. Booth, A., & Camacho, P. (2013). A Closer look at calcium absorption and the benefits and risks of dietary versus supplemental calcium. Postgraduate Medicine, 125(6), 73–81. https://doi.org/10.3810/pgm.2013.11.2714 
  19. Borrego, J., Pérez del Barrio, P., Serrano, P., García Cortés, M. J., Sánchez Perales, M. C., Borrego, F. J., Liébana, A., Gil Cunquero, J. M., & Pérez Bañasco, V. (2000). [A comparison of phosphorus-chelating effect of calcium carbonate versus calcium acetate before dialysis]. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia, 20(4), 348–354. https://www.ncbi.nlm.nih.gov/pubmed/11039260 
  20. Bristow, S. M., Gamble, G. D., Stewart, A., Horne, L., House, M. E., Aati, O., Mihov, B., Horne, A. M., & Reid, I. R. (2014). Acute and 3-month effects of microcrystalline hydroxyapatite, calcium citrate and calcium carbonate on serum calcium and markers of bone turnover: A randomised controlled trial in postmenopausal women. The British Journal of Nutrition, 112(10), 1611–1620. https://doi.org/10.1017/S0007114514002785 
  21. Broner, C. W., Stidham, G. L., Westenkirchner, D. F., & Watson, D. C. (1990). A prospective, randomized, double-blind comparison of calcium chloride and calcium gluconate therapies for hypocalcemia in critically ill children. The Journal of Pediatrics, 117(6), 986–989. https://doi.org/10.1016/s0022-3476(05)80151-9 
  22. Brown, G., Allen, L., & Torkelson, A. (2013). Direct patient interventions that can reduce maternal mortality in developing countries: A systematic review. Family Medicine, 45(8), 550–557. https://www.ncbi.nlm.nih.gov/pubmed/24129867 
  23. Bucher, H. C., Cook, R. J., Guyatt, G. H., Lang, J. D., Cook, D. J., Hatala, R., & Hunt, D. L. (1996). Effects of dietary calcium supplementation on blood pressure. A meta-analysis of randomized controlled trials. The Journal of the American Medical Association, 275(13), 1016–1022. https://doi.org/10.1001/jama.1996.03530370054031 
  24. Bucher, H. C., Guyatt, G. H., Cook, R. J., Hatala, R., Cook, D. J., Lang, J. D., & Hunt, D. (1996). Effect of calcium supplementation on pregnancy-induced hypertension and preeclampsia: A meta-analysis of randomized controlled trials. The Journal of the American Medical Association, 275(14), 1113–1117. https://doi.org/10.1001/jama.1996.03530380055031 
  25. Buppasiri, P., Lumbiganon, P., Thinkhamrop, J., Ngamjarus, C., Laopaiboon, M., & Medley, N. (2015). Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database of Systematic Reviews, 2, CD007079. https://doi.org/10.1002/14651858.CD007079.pub3 
  26. Burckhardt, P. (2011). Potential negative cardiovascular effects of calcium supplements [Review of Potential negative cardiovascular effects of calcium supplements]. Osteoporosis International, 22(6), 1645–1647. https://doi.org/10.1007/s00198-011-1602-5 
  27. Cai, G., Tian, J., Winzenberg, T., & Wu, F. (2020). Calcium supplementation for improving bone density in lactating women: A systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 112(1), 48–56. https://doi.org/10.1093/ajcn/nqaa103 
  28. Candelas, G., Martinez-Lopez, J. A., Rosario, M. P., Carmona, L., & Loza, E. (2012). Calcium supplementation and kidney stone risk in osteoporosis: A systematic literature review. Clinical and Experimental Rheumatology, 30(6), 954–961. https://www.ncbi.nlm.nih.gov/pubmed/23137489 
  29. Castelo-Branco, C., Cancelo Hidalgo, M. J., Palacios, S., Ciria-Recasens, M., Fernández-Pareja, A., Carbonell-Abella, C., Manasanch, J., & Haya-Palazuelos, J. (2020). Efficacy and safety of ossein-hydroxyapatite complex versus calcium carbonate to prevent bone loss. Climacteric: The Journal of the International Menopause Society, 23(3), 252–258. https://doi.org/10.1080/13697137.2019.1685488 
  30. Castelo-Branco, C., Ciria-Recasens, M., Cancelo-Hidalgo, M. J., Palacios, S., Haya-Palazuelos, J., Carbonell-Abelló, J., Blanch-Rubió, J., Martínez-Zapata, M. J., Manasanch, J., & Pérez-Edo, L. (2009). Efficacy of ossein-hydroxyapatite complex compared with calcium carbonate to prevent bone loss: A meta-analysis. Menopause , 16(5), 984–991. https://doi.org/10.1097/gme.0b013e3181a1824e 
  31. Castelo-Branco, C., Dávila, J., Alvarez, L., & Balasch, J. (2015). Comparison of the effects of calcium carbonate and ossein-hydroxyapatite complex on back and knee pain and quality of life in osteopenic perimenopausal women. Maturitas, 81(1), 76–82. https://doi.org/10.1016/j.maturitas.2015.02.265 
  32. Chailurkit, L.-O., Saetung, S., Thakkinstian, A., Ongphiphadhanakul, B., & Rajatanavin, R. (2010). Discrepant influence of vitamin D status on parathyroid hormone and bone mass after two years of calcium supplementation. Clinical Endocrinology, 73(2), 167–172. https://doi.org/10.1111/j.1365-2265.2010.03779.x 
  33. Chen, C., Ge, S., Li, S., Wu, L., Liu, T., & Li, C. (2017). The effects of dietary calcium supplements alone or with vitamin d on cholesterol metabolism: A meta-analysis of randomized controlled trials. The Journal of Cardiovascular Nursing, 32(5), 496–506. https://doi.org/10.1097/JCN.0000000000000379 
  34. Chiodini, I., & Bolland, M. J. (2018). Calcium supplementation in osteoporosis: Useful or harmful? European Journal of Endocrinology, 178(4), D13–D25. https://doi.org/10.1530/EJE-18-0113 
  35. Chung, M., Tang, A. M., Fu, Z., Wang, D. D., & Newberry, S. J. (2016). Calcium intake and cardiovascular disease risk: An updated systematic review and meta-analysis. Annals of Internal Medicine, 165(12), 856–866. https://doi.org/10.7326/M16-1165 
  36. Ciria-Recasens, M., Blanch-Rubió, J., Coll-Batet, M., Del Pilar Lisbona-Pérez, M., Díez-Perez, A., Carbonell-Abelló, J., Manasanch, J., & Pérez-Edo, L. (2011). Comparison of the effects of ossein-hydroxyapatite complex and calcium carbonate on bone metabolism in women with senile osteoporosis: A randomized, open-label, parallel-group, controlled, prospective study. Clinical Drug Investigation, 31(12), 817–824. https://doi.org/10.1007/BF03256920 
  37. Cormick, G., & Belizán, J. M. (2019). Calcium intake and health. Nutrients, 11(7). https://doi.org/10.3390/nu11071606 
  38. Cormick, G., Ciapponi, A., Cafferata, M. L., & Belizán, J. M. (2015). Calcium supplementation for prevention of primary hypertension. Cochrane Database of Systematic Reviews, 6, CD010037. https://doi.org/10.1002/14651858.CD010037.pub2 
  39. Courteix, D., Jaffré, C., Lespessailles, E., & Benhamou, L. (2005). Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: A double-blind randomised placebo-controlled trial. International Journal of Sports Medicine, 26(5), 332–338. https://doi.org/10.1055/s-2004-821040 
  40. Crowther, C. A., Hiller, J. E., Pridmore, B., Bryce, R., Duggan, P., Hague, W. M., & Robinson, J. S. (1999). Calcium supplementation in nulliparous women for the prevention of pregnancy-induced hypertension, preeclampsia and preterm birth: an Australian randomized trial. FRACOG and the ACT Study Group. The Australian & New Zealand Journal of Obstetrics & Gynaecology, 39(1), 12–18. https://doi.org/10.1111/j.1479-828x.1999.tb03434.x 
  41. Cullers, A., King, J. C., Van Loan, M., Gildengorin, G., & Fung, E. B. (2019). Effect of prenatal calcium supplementation on bone during pregnancy and 1 y postpartum. The American Journal of Clinical Nutrition, 109(1), 197–206. https://doi.org/10.1093/ajcn/nqy233 
  42. Cumming, R. G., & Nevitt, M. C. (1997). Calcium for prevention of osteoporotic fractures in postmenopausal women. Journal of Bone and Mineral Research, 12(9), 1321–1329. https://doi.org/10.1359/jbmr.1997.12.9.1321 
  43. d’Almeida Filho, E. J., da Cruz, E. A., Hoette, M., Ruzany, F., Keen, L. N., & Lugon, J. R. (2000). Calcium acetate versus calcium carbonate in the control of hyperphosphatemia in hemodialysis patients. Sao Paulo Medical Journal, 118(6), 179–184. https://doi.org/10.1590/s1516-31802000000600006 
  44. Dawson-Hughes, B., Dallal, G. E., Krall, E. A., Sadowski, L., Sahyoun, N., & Tannenbaum, S. (1990). A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. The New England Journal of Medicine, 323(13), 878–883. https://doi.org/10.1056/NEJM199009273231305 
  45. Derakhshandeh-Rishehri, S.-M., Ghobadi, S., Akhlaghi, M., & Faghih, S. (2020). The effect of calcium supplement intake on lipid profile: A systematic review and meta-analysis of randomized controlled clinical trials. Critical Reviews in Food Science and Nutrition, 1–10. https://doi.org/10.1080/10408398.2020.1850414 
  46. Deroisy, R., Zartarian, M., Meurmans, L., Nelissenne, N., Micheletti, M. C., Albert, A., & Reginster, J. Y. (1997). Acute changes in serum calcium and parathyroid hormone circulating levels induced by the oral intake of five currently available calcium salts in healthy male volunteers. Clinical Rheumatology, 16(3), 249–253. https://doi.org/10.1007/BF02238959 
  47. Dibba, B., Prentice, A., Ceesay, M., Mendy, M., Darboe, S., Stirling, D. M., Cole, T. J., & Poskitt, E. M. E. (2002). Bone mineral contents and plasma osteocalcin concentrations of Gambian children 12 and 24 mo after the withdrawal of a calcium supplement. The American Journal of Clinical Nutrition, 76(3), 681–686. https://doi.org/10.1093/ajcn/76.3.681 
  48. Dibba, B., Prentice, A., Ceesay, M., Stirling, D. M., Cole, T. J., & Poskitt, E. M. (2000). Effect of calcium supplementation on bone mineral accretion in gambian children accustomed to a low-calcium diet. The American Journal of Clinical Nutrition, 71(2), 544–549. https://doi.org/10.1093/ajcn/71.2.544 
  49. Dickinson, H. O., Nicolson, D. J., Cook, J. V., Campbell, F., Beyer, F. R., Ford, G. A., & Mason, J. (2006). Calcium supplementation for the management of primary hypertension in adults. Cochrane Database of Systematic Reviews, 2, CD004639. https://doi.org/10.1002/14651858.CD004639.pub2 
  50. Edafe, O., Mech, C. E., & Balasubramanian, S. P. (2019). Calcium, vitamin D or recombinant parathyroid hormone for managing post-thyroidectomy hypoparathyroidism. Cochrane Database of Systematic Reviews, 5, CD012845. https://doi.org/10.1002/14651858.CD012845.pub2 
  51. Elders, P. J., Lips, P., Netelenbos, J. C., van Ginkel, F. C., Khoe, E., van der Vijgh, W. J., & van der Stelt, P. F. (1994). Long-term effect of calcium supplementation on bone loss in perimenopausal women. Journal of Bone and Mineral Research, 9(7), 963–970. https://doi.org/10.1002/jbmr.5650090702 
  52. Elders, P. J., Netelenbos, J. C., Lips, P., van Ginkel, F. C., Khoe, E., Leeuwenkamp, O. R., Hackeng, W. H., & van der Stelt, P. F. (1991). Calcium supplementation reduces vertebral bone loss in perimenopausal women: A controlled trial in 248 women between 46 and 55 years of age. The Journal of Clinical Endocrinology and Metabolism, 73(3), 533–540. https://doi.org/10.1210/jcem-73-3-533 
  53. Emmett, M., Sirmon, M. D., Kirkpatrick, W. G., Nolan, C. R., Schmitt, G. W., & Cleveland, M. B. (1991). Calcium acetate control of serum phosphorus in hemodialysis patients. American Journal of Kidney Diseases, 17(5), 544–550. https://doi.org/10.1016/s0272-6386(12)80496-3 
  54. Ettinger, A. S., Lamadrid-Figueroa, H., Mercado-García, A., Kordas, K., Wood, R. J., Peterson, K. E., Hu, H., Hernández-Avila, M., & Téllez-Rojo, M. M. (2014). Effect of calcium supplementation on bone resorption in pregnancy and the early postpartum: A randomized controlled trial in Mexican women. Nutrition Journal, 13(1), 116. https://doi.org/10.1186/1475-2891-13-116 
  55. Ettinger, A. S., Lamadrid-Figueroa, H., Téllez-Rojo, M. M., Mercado-García, A., Peterson, K. E., Schwartz, J., Hu, H., & Hernández-Avila, M. (2009). Effect of calcium supplementation on blood lead levels in pregnancy: A randomized placebo-controlled trial. Environmental Health Perspectives, 117(1), 26–31. https://doi.org/10.1289/ehp.11868 
  56. Farrerons, J., Olazabal, A., Díaz López, C., López Ciudad, A., & Rams, A. (1989). [An analysis of calcium pidolate absorption and a comparison with that of a salt in common use, gluconate-lactate-carbonate, in postmenopausal osteoporosis]. Anales de medicina interna, 6(7), 361–365. https://www.ncbi.nlm.nih.gov/pubmed/2491491 
  57. Foroozanfard, F., Jamilian, M., Bahmani, F., Talaee, R., Talaee, N., Hashemi, T., Nasri, K., Asemi, Z., & Esmaillzadeh, A. (2015). Calcium plus vitamin D supplementation influences biomarkers of inflammation and oxidative stress in overweight and vitamin D-deficient women with polycystic ovary syndrome: A randomized double-blind placebo-controlled clinical trial. Clinical Endocrinology, 83(6), 888–894. https://doi.org/10.1111/cen.12840 
  58. Gallagher, J. C., Jindal, P. S., & Smith, L. M. (2014). Vitamin D does not increase calcium absorption in young women: A randomized clinical trial. Journal of Bone and Mineral Research, 29(5), 1081–1087. https://doi.org/10.1002/jbmr.2121 
  59. Ghanbari, Z., Haghollahi, F., Shariat, M., Foroshani, A. R., & Ashrafi, M. (2009). Effects of calcium supplement therapy in women with premenstrual syndrome. Taiwanese Journal of Obstetrics & Gynecology, 48(2), 124–129. https://doi.org/10.1016/S1028-4559(09)60271-0 
  60. Gonnelli, S., Cepollaro, C., Camporeale, A., Nardi, P., Rossi, S., & Gennari, C. (1995). Acute biochemical variations induced by two different calcium salts in healthy perimenopausal women. Calcified Tissue International, 57(3), 175–177. https://doi.org/10.1007/BF00310254 
  61. Greupner, T., Schneider, I., & Hahn, A. (2017). Calcium bioavailability from mineral waters with different mineralization in comparison to milk and a supplement. Journal of the American College of Nutrition, 36(5), 386–390. https://doi.org/10.1080/07315724.2017.1299651 
  62. Griffith, L. E., Guyatt, G. H., Cook, R. J., Bucher, H. C., & Cook, D. J. (1999). The influence of dietary and nondietary calcium supplementation on blood pressure: An updated metaanalysis of randomized controlled trials. American Journal of Hypertension, 12(1), 84–92. https://doi.org/10.1016/s0895-7061(98)00224-6 
  63. Grobbee, D. E., & Hofman, A. (1986). Effect of calcium supplementation on diastolic blood pressure in young people with mild hypertension. The Lancet, 2(8509), 703–707. https://doi.org/10.1016/s0140-6736(86)90228-x
  64. Hansen, C., Werner, E., Erbes, H. J., Larrat, V., & Kaltwasser, J. P. (1996). Intestinal calcium absorption from different calcium preparations: Influence of anion and solubility. Osteoporosis International, 6(5), 386–393. https://doi.org/10.1007/BF01623012
  65. Harsløf, T., Rolighed, L., & Rejnmark, L. (2019). Huge variations in definition and reported incidence of postsurgical hypoparathyroidism: A systematic review. Endocrine, 64(1), 176–183. https://doi.org/10.1007/s12020-019-01858-4
  66. Harvey, J. A., Zobitz, M. M., & Pak, C. Y. (1988). Dose dependency of calcium absorption: a comparison of calcium carbonate and calcium citrate. Journal of Bone and Mineral Research, 3(3), 253–258. https://doi.org/10.1002/jbmr.5650030303 
  67. Heaney, R. P., Dowell, M. S., & Barger-Lux, M. J. (1999). Absorption of calcium as the carbonate and citrate salts, with some observations on method. Osteoporosis International, 9(1), 19–23. https://doi.org/10.1007/s001980050111 
  68. Heaney, R. P., Dowell, M. S., Bierman, J., Hale, C. A., & Bendich, A. (2001). Absorbability and cost effectiveness in calcium supplementation. Journal of the American College of Nutrition, 20(3), 239–246. https://doi.org/10.1080/07315724.2001.10719038 
  69. Heaney, R. P., Rafferty, K., Dowell, M. S., & Bierman, J. (2005). Calcium fortification systems differ in bioavailability. Journal of the American Dietetic Association, 105(5), 807–809. https://doi.org/10.1016/j.jada.2005.02.012 
  70. Heller, H. J., Greer, L. G., Haynes, S. D., Poindexter, J. R., & Pak, C. Y. (2000). Pharmacokinetic and pharmacodynamic comparison of two calcium supplements in postmenopausal women. Journal of Clinical Pharmacology, 40(11), 1237–1244. https://www.ncbi.nlm.nih.gov/pubmed/11075309 
  71. Heller, H. J., Stewart, A., Haynes, S., & Pak, C. Y. (1999). Pharmacokinetics of calcium absorption from two commercial calcium supplements. Journal of Clinical Pharmacology, 39(11), 1151–1154. https://www.ncbi.nlm.nih.gov/pubmed/10579145 
  72. Hernandez-Avila, M., Gonzalez-Cossio, T., Hernandez-Avila, J. E., Romieu, I., Peterson, K. E., Aro, A., Palazuelos, E., & Hu, H. (2003). Dietary calcium supplements to lower blood lead levels in lactating women: A randomized placebo-controlled trial. Epidemiology, 14(2), 206–212. https://doi.org/10.1097/01.EDE.0000038520.66094.34 
  73. Hervás, J. G., Prados, D., & Cerezo, S. (2003). Treatment of hyperphosphatemia with sevelamer hydrochloride in hemodialysis patients: A comparison with calcium acetate. Kidney International, 85, S69–S72. https://doi.org/10.1046/j.1523-1755.63.s85.17.x 
  74. Hitz, M. F., Eskildsen, P. C., & Jensen, J. B. (2005). Bioavailability of calcium: comparison of calcium carbonate and milk and the effect of vitamin D, age, and sex using 24-hour urine calcium as a method. Calcified Tissue International, 77(6), 361–366. https://doi.org/10.1007/s00223-005-0299-x 
  75. Hofmeyr, G. J., Belizán, J. M., von Dadelszen, P., & Calcium and Pre-eclampsia (CAP) Study Group. (2014). Low-dose calcium supplementation for preventing pre-eclampsia: A systematic review and commentary. An International Journal of Obstetrics and Gynaecology, 121(8), 951–957. https://doi.org/10.1111/1471-0528.12613 
  76. Hofmeyr, G. J., Duley, L., & Atallah, A. (2007). Dietary calcium supplementation for prevention of pre-eclampsia and related problems: A systematic review and commentary. An International Journal of Obstetrics and Gynaecology, 114(8), 933–943. https://doi.org/10.1111/j.1471-0528.2007.01389.x 
  77. Hofmeyr, G. J., Lawrie, T. A., Atallah, Á. N., & Torloni, M. R. (2018). Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database of Systematic Reviews, 10, CD001059. https://doi.org/10.1002/14651858.CD001059.pub5 
  78. Hu, Z.-C., Tang, Q., Sang, C.-M., Tang, L., Li, X., Zheng, G., Feng, Z.-H., Xuan, J.-W., Shen, Z.-H., Shen, L.-Y., Ni, W.-F., & Wu, A.-M. (2019). Comparison of fracture risk using different supplemental doses of vitamin D, calcium or their combination: A network meta-analysis of randomised controlled trials. BMJ Open, 9(10), e024595. https://doi.org/10.1136/bmjopen-2018-024595 
  79. Hunt, C. D., & Johnson, L. K. (2007). Calcium requirements: New estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. The American Journal of Clinical Nutrition, 86(4), 1054–1063. https://doi.org/10.1093/ajcn/86.4.1054 
  80. Imdad, A., Jabeen, A., & Bhutta, Z. A. (2011). Role of calcium supplementation during pregnancy in reducing risk of developing gestational hypertensive disorders: A meta-analysis of studies from developing countries. BMC Public Health, 11(3), S18. https://doi.org/10.1186/1471-2458-11-S3-S18
  81. Jackson, R. D., LaCroix, A. Z., Gass, M., Wallace, R. B., Robbins, J., Lewis, C. E., Bassford, T., Beresford, S. A. A., Black, H. R., Blanchette, P., Bonds, D. E., Brunner, R. L., Brzyski, R. G., Caan, B., Cauley, J. A., Chlebowski, R. T., Cummings, S. R., Granek, I., Hays, J., … Women’s Health Initiative Investigators. (2006). Calcium plus vitamin D supplementation and the risk of fractures. The New England Journal of Medicine, 354(7), 669–683. https://doi.org/10.1056/NEJMoa055218 
  82. Jamal, S. A., Vandermeer, B., Raggi, P., Mendelssohn, D. C., Chatterley, T., Dorgan, M., Lok, C. E., Fitchett, D., & Tsuyuki, R. T. (2013). Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: An updated systematic review and meta-analysis. The Lancet, 382(9900), 1268–1277. https://doi.org/10.1016/S0140-6736(13)60897-1 
  83. Kahwati, L. C., Weber, R. P., Pan, H., Gourlay, M., LeBlanc, E., Coker-Schwimmer, M., & Viswanathan, M. (2018). Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: Evidence report and systematic review for the US preventive services task force. The Journal of the American Medical Association, 319(15), 1600–1612. https://doi.org/10.1001/jama.2017.21640 
  84. Kalluru, R., Ames, R., Mason, B., Bolland, M. J., Gamble, G. D., Grey, A., Horne, A., & Reid, I. R. (2015). Bone density in healthy men after cessation of calcium supplements: 20-month follow-up of a randomized controlled trial. Osteoporosis International, 26(1), 173–178. https://doi.org/10.1007/s00198-014-2896-x
  85. Karp, H. J., Ketola, M. E., & Lamberg-Allardt, C. J. E. (2009). Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. The British Journal of Nutrition, 102(9), 1341–1347. https://doi.org/10.1017/S0007114509990195
  86. Kenny, A. M., Prestwood, K. M., Biskup, B., Robbins, B., Zayas, E., Kleppinger, A., Burleson, J. A., & Raisz, L. G. (2004). Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporosis International, 15(4), 290–294. https://doi.org/10.1007/s00198-003-1567-0 
  87. Khaing, W., Vallibhakara, S. A.-O., Tantrakul, V., Vallibhakara, O., Rattanasiri, S., McEvoy, M., Attia, J., & Thakkinstian, A. (2017). Calcium and vitamin D supplementation for prevention of preeclampsia: A systematic review and network meta-analysis. Nutrients, 9(10). https://doi.org/10.3390/nu9101141 
  88. Kopecky, S. L., Bauer, D. C., Gulati, M., Nieves, J. W., Singer, A. J., Toth, P. P., Underberg, J. A., Wallace, T. C., & Weaver, C. M. (2016). Lack of evidence linking calcium with or without vitamin d supplementation to cardiovascular disease in generally healthy adults: A clinical guideline from the national osteoporosis foundation and the American society for preventive cardiology. Annals of Internal Medicine, 165(12), 867–868. https://doi.org/10.7326/M16-1743 
  89. Kumar, A., Devi, S. G., Batra, S., Singh, C., & Shukla, D. K. (2009). Calcium supplementation for the prevention of pre-eclampsia. International Journal of Gynaecology and Obstetrics, 104(1), 32–36. https://doi.org/10.1016/j.ijgo.2008.08.027 
  90. Lee, W. T., Leung, S. S., Leung, D. M., Tsang, H. S., Lau, J., & Cheng, J. C. (1995). A randomized double-blind controlled calcium supplementation trial, and bone and height acquisition in children. The British Journal of Nutrition, 74(1), 125–139. https://doi.org/10.1079/bjn19950112 
  91. Lee, W. T., Leung, S. S., Wang, S. H., Xu, Y. C., Zeng, W. P., Lau, J., Oppenheimer, S. J., & Cheng, J. C. (1994). Double-blind, controlled calcium supplementation and bone mineral accretion in children accustomed to a low-calcium diet. The American Journal of Clinical Nutrition, 60(5), 744–750. https://doi.org/10.1093/ajcn/60.5.744 
  92. Lewis, J. R., Brennan-Speranza, T. C., Levinger, I., Byrnes, E., Lim, E. M., Blekkenhorst, L. C., Sim, M., Hodgson, J. M., Zhu, K., Lim, W. H., Adams, L. A., & Prince, R. L. (2019). Effects of calcium supplementation on circulating osteocalcin and glycated haemoglobin in older women. Osteoporosis International, 30(10), 2065–2072. https://doi.org/10.1007/s00198-019-05087-3 
  93. Lewis, J. R., Radavelli-Bagatini, S., Rejnmark, L., Chen, J. S., Simpson, J. M., Lappe, J. M., Mosekilde, L., Prentice, R. L., & Prince, R. L. (2015). The effects of calcium supplementation on verified coronary heart disease hospitalization and death in postmenopausal women: A collaborative meta-analysis of randomized controlled trials. Journal of Bone and Mineral Research, 30(1), 165–175. https://doi.org/10.1002/jbmr.2311 
  94. Lewis, J. R., Zhu, K., & Prince, R. L. (2012). Adverse events from calcium supplementation: relationship to errors in myocardial infarction self-reporting in randomized controlled trials of calcium supplementation. Journal of Bone and Mineral Research, 27(3), 719–722. https://doi.org/10.1002/jbmr.1484 
  95. Li, K., Kaaks, R., Linseisen, J., & Rohrmann, S. (2012). Associations of dietary calcium intake and calcium supplementation with myocardial infarction and stroke risk and overall cardiovascular mortality in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition study (EPIC-Heidelberg). Heart, 98(12), 920–925. https://doi.org/10.1136/heartjnl-2011-301345 
  96. Li, K., Wang, X.-F., Li, D.-Y., Chen, Y.-C., Zhao, L.-J., Liu, X.-G., Guo, Y.-F., Shen, J., Lin, X., Deng, J., Zhou, R., & Deng, H.-W. (2018). The good, the bad, and the ugly of calcium supplementation: A review of calcium intake on human health. Clinical Interventions in Aging, 13, 2443–2452. https://doi.org/10.2147/CIA.S157523 
  97. Li N., Wang Y., & Yin S.-A. (2007). [Evaluation of milk intake and calcium supplement on bone mineral density and growth in children through Meta-analysis]. Chinese Journal of Preventive Medicine, 41(3), 172–175. https://www.ncbi.nlm.nih.gov/pubmed/17708864 
  98. Lloyd, T., Andon, M. B., Rollings, N., Martel, J. K., Landis, J. R., Demers, L. M., Eggli, D. F., Kieselhorst, K., & Kulin, H. E. (1993). Calcium supplementation and bone mineral density in adolescent girls. The Journal of the American Medical Association, 270(7), 841–844. https://www.ncbi.nlm.nih.gov/pubmed/8340983 
  99. Lönnerdal, B. (2010). Calcium and iron absorption--mechanisms and public health relevance. International Journal for Vitamin and Nutrition Research, 80(4-5), 293–299. https://doi.org/10.1024/0300-9831/a000036 
  100. López-Jaramillo, P., Delgado, F., Jácome, P., Terán, E., Ruano, C., & Rivera, J. (1997). Calcium supplementation and the risk of preeclampsia in Ecuadorian pregnant teenagers. Obstetrics and Gynecology, 90(2), 162–167. https://doi.org/10.1016/S0029-7844(97)00254-8 
  101. Martyn-St James, M., & Carroll, S. (2006). High-intensity resistance training and postmenopausal bone loss: A meta-analysis. Osteoporosis International, 17(8), 1225–1240. https://doi.org/10.1007/s00198-006-0083-4 
  102. Matkovic, V., Goel, P. K., Badenhop-Stevens, N. E., Landoll, J. D., Li, B., Ilich, J. Z., Skugor, M., Nagode, L. A., Mobley, S. L., Ha, E.-J., Hangartner, T. N., & Clairmont, A. (2005). Calcium supplementation and bone mineral density in females from childhood to young adulthood: A randomized controlled trial. The American Journal of Clinical Nutrition, 81(1), 175–188. https://doi.org/10.1093/ajcn/81.1.175 
  103. Miller, J. Z., Smith, D. L., Flora, L., Slemenda, C., Jiang, X. Y., & Johnston, C. C., Jr. (1988). Calcium absorption from calcium carbonate and a new form of calcium (CCM) in healthy male and female adolescents. The American Journal of Clinical Nutrition, 48(5), 1291–1294. https://doi.org/10.1093/ajcn/48.5.1291 
  104. Mølgaard, C., Thomsen, B. L., & Michaelsen, K. F. (2004). Effect of habitual dietary calcium intake on calcium supplementation in 12-14-y-old girls. The American Journal of Clinical Nutrition, 80(5), 1422–1427. https://doi.org/10.1093/ajcn/80.5.1422 
  105. Mortensen, L., & Charles, P. (1996). Bioavailability of calcium supplements and the effect of Vitamin D: Comparisons between milk, calcium carbonate, and calcium carbonate plus vitamin D. The American Journal of Clinical Nutrition, 63(3), 354–357. https://doi.org/10.1093/ajcn/63.3.354
  106. Nakamura, K., Saito, T., Kobayashi, R., Oshiki, R., Kitamura, K., Oyama, M., Narisawa, S., Nashimoto, M., Takahashi, S., & Takachi, R. (2012). Effect of low-dose calcium supplements on bone loss in perimenopausal and postmenopausal Asian women: A randomized controlled trial. Journal of Bone and Mineral Research, 27(11), 2264–2270. https://doi.org/10.1002/jbmr.1676 
  107. Nakamura, K., Saito, T., Kobayashi, R., Oshiki, R., Kitamura, K., & Watanabe, Y. (2019). Physical activity modifies the effect of calcium supplements on bone loss in perimenopausal and postmenopausal women: Subgroup analysis of a randomized controlled trial. Archives of Osteoporosis, 14(1), 17. https://doi.org/10.1007/s11657-019-0575-4 
  108. National Institutes of Health. (2020, March 26). Calcium: Fact Sheet for Health Professionals. https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ 
  109. Nordin, B. E. C. (2009). The effect of calcium supplementation on bone loss in 32 controlled trials in postmenopausal women. Osteoporosis International, 20(12), 2135–2143. https://doi.org/10.1007/s00198-009-0926-x 
  110. Nowak, M. G., Szulc-Musioł, B., & Ryszka, F. (2008). Pharmacokinetics of calcium from calcium supplements in healthy volunteers. Pakistan Journal of Pharmaceutical Sciences, 21(2), 109–112. https://www.ncbi.nlm.nih.gov/pubmed/18390439 
  111. Nowson, C. A., Green, R. M., Hopper, J. L., Sherwin, A. J., Young, D., Kaymakci, B., Guest, C. S., Smid, M., Larkins, R. G., & Wark, J. D. (1997). A co-twin study of the effect of calcium supplementation on bone density during adolescence. Osteoporosis International, 7(3), 219–225. https://doi.org/10.1007/BF01622292 
  112. Oliván Martínez, J., Pérez Cano, R., Miranda García, M. J., Montoya García, M. J., Moruno García, R., Cuenca López, L., & Garrido Peralta, M. (1989). [Effect of an oral calcium supplement in the treatment of slight-to- moderate essential arterial hypertension]. Anales de medicina interna, 6(4), 192–196. https://www.ncbi.nlm.nih.gov/pubmed/2491521 
  113. Pan Z., Zhao L., Guo D., Yang R., Xu C., & Wu X. (2000). [Effects of oral calcium supplementation on blood pressure in population]. Chinese Journal of Preventive Medicine, 34(2), 109–112. https://www.ncbi.nlm.nih.gov/pubmed/11860914 
  114. Park, J. J. H., Harari, O., Siden, E., Zoratti, M., Dron, L., Zannat, N.-E., Lester, R. T., Thorlund, K., & Mills, E. J. (2019). Interventions to improve birth outcomes of pregnant women living in low- and middle-income countries: a systematic review and network meta-analysis. Gates Open Research, 3, 1657. https://doi.org/10.12688/gatesopenres.13081.2 
  115. Pikilidou, M. I., Lasaridis, A. N., Sarafidis, P. A., Befani, C. D., Koliakos, G. G., Tziolas, I. M., Kazakos, K. A., Yovos, J. G., & Nilsson, P. M. (2009). Insulin sensitivity increase after calcium supplementation and change in intraplatelet calcium and sodium-hydrogen exchange in hypertensive patients with Type 2 diabetes. Diabetic Medicine, 26(3), 211–219. https://doi.org/10.1111/j.1464-5491.2009.02673.x 
  116. Praet, J. P., Peretz, A., Mets, T., & Rozenberg, S. (1998). Comparative study of the intestinal absorption of three salts of calcium in young and elderly women. Journal of Endocrinological Investigation, 21(4), 263–267. https://doi.org/10.1007/BF03347313 
  117. Prince, R. L., Devine, A., Dhaliwal, S. S., & Dick, I. M. (2006). Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Archives of Internal Medicine, 166(8), 869–875. https://doi.org/10.1001/archinte.166.8.869 
  118. Purwar, M., Kulkarni, H., Motghare, V., & Dhole, S. (1996). Calcium supplementation and prevention of pregnancy induced hypertension. The Journal of Obstetrics and Gynaecology Research, 22(5), 425–430. https://doi.org/10.1111/j.1447-0756.1996.tb01052.x 
  119. Qunibi, W., Moustafa, M., Muenz, L. R., He, D. Y., Kessler, P. D., Diaz-Buxo, J. A., Budoff, M., & CARE-2 Investigators. (2008). A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: The Calcium Acetate Renagel Evaluation-2 (CARE-2) study. American Journal of Kidney Diseases, 51(6), 952–965. https://doi.org/10.1053/j.ajkd.2008.02.298 
  120. Qunibi, W., Winkelmayer, W. C., Solomon, R., Moustafa, M., Kessler, P., Ho, C.-H., Greenberg, J., & Diaz-Buxo, J. A. (2011). A randomized, double-blind, placebo-controlled trial of calcium acetate on serum phosphorus concentrations in patients with advanced non-dialysis-dependent chronic kidney disease. BMC Nephrology, 12, 9. https://doi.org/10.1186/1471-2369-12-9 
  121. Qunibi, W. Y., Hootkins, R. E., McDowell, L. L., Meyer, M. S., Simon, M., Garza, R. O., Pelham, R. W., Cleveland, M. V. B., Muenz, L. R., He, D. Y., & Nolan, C. R. (2004). Treatment of hyperphosphatemia in hemodialysis patients: The Calcium Acetate Renagel Evaluation (CARE Study). Kidney International, 65(5), 1914–1926. https://doi.org/10.1111/j.1523-1755.2004.00590.x 
  122. Radakrishnan, A., Reddy, A. T., Dalal, P., Rastatter, J. C., Josefson, J. L., Samis, J. H., Beestrum, M., Tian, Y., & Raval, M. V. (2021). Hypocalcemia prevention and management after thyroidectomy in children: A systematic review. Journal of Pediatric Surgery, 56(3), 526–533. https://doi.org/10.1016/j.jpedsurg.2020.08.032 
  123. Rajatanavin, R., Chailurkit, L., Saetung, S., Thakkinstian, A., & Nimitphong, H. (2013). The efficacy of calcium supplementation alone in elderly Thai women over a 2-year period: a randomized controlled trial. Osteoporosis International, 24(11), 2871–2877. https://doi.org/10.1007/s00198-013-2387-5 
  124. Reginster, J. Y., Denis, D., Bartsch, V., Deroisy, R., Zegels, B., & Franchimont, P. (1993). Acute biochemical variations induced by four different calcium salts in healthy male volunteers. Osteoporosis International, 3(5), 271–275. https://doi.org/10.1007/BF01623832 
  125. Reid, I. R., Ames, R., Mason, B., Reid, H. E., Bacon, C. J., Bolland, M. J., Gamble, G. D., Grey, A., & Horne, A. (2008). Randomized controlled trial of calcium supplementation in healthy, nonosteoporotic, older men. Archives of Internal Medicine, 168(20), 2276–2282. https://doi.org/10.1001/archinte.168.20.2276 
  126. Reid, I. R., Ames, R. W., Evans, M. C., Gamble, G. D., & Sharpe, S. J. (1993). Effect of calcium supplementation on bone loss in postmenopausal women. The New England Journal of Medicine, 328(7), 460–464. https://doi.org/10.1056/NEJM199302183280702 
  127. Reid, I. R., Ames, R. W., Evans, M. C., Gamble, G. D., & Sharpe, S. J. (1995). Long-term effects of calcium supplementation on bone loss and fractures in postmenopausal women: A randomized controlled trial. The American Journal of Medicine, 98(4), 331–335. https://doi.org/10.1016/S0002-9343(99)80310-6 
  128. Reid, I. R., Mason, B., Horne, A., Ames, R., Clearwater, J., Bava, U., Orr-Walker, B., Wu, F., Evans, M. C., & Gamble, G. D. (2002). Effects of calcium supplementation on serum lipid concentrations in normal older women: A randomized controlled trial. The American Journal of Medicine, 112(5), 343–347. https://doi.org/10.1016/s0002-9343(01)01138-x 
  129. Riggs, B. L., O’Fallon, W. M., Muhs, J., O’Connor, M. K., Kumar, R., & Melton, L. J., 3rd. (1998). Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. Journal of Bone and Mineral Research, 13(2), 168–174. https://doi.org/10.1359/jbmr.1998.13.2.168 
  130. Roh, J.-L., Park, J.-Y., & Park, C. I. (2009). Prevention of postoperative hypocalcemia with routine oral calcium and vitamin D supplements in patients with differentiated papillary thyroid carcinoma undergoing total thyroidectomy plus central neck dissection. Cancer, 115(2), 251–258. https://doi.org/10.1002/cncr.24027 
  131. Rozen, G. S., Rennert, G., Dodiuk-Gad, R. P., Rennert, H. S., Ish-Shalom, N., Diab, G., Raz, B., & Ish-Shalom, S. (2003). Calcium supplementation provides an extended window of opportunity for bone mass accretion after menarche. The American Journal of Clinical Nutrition, 78(5), 993–998. https://doi.org/10.1093/ajcn/78.5.993 
  132. Ruospo, M., Palmer, S. C., Natale, P., Craig, J. C., Vecchio, M., Elder, G. J., & Strippoli, G. F. (2018). Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database of Systematic Reviews, 8, CD006023. https://doi.org/10.1002/14651858.CD006023.pub3 
  133. Sakhaee, K., Bhuket, T., Adams-Huet, B., & Rao, D. S. (1999). Meta-analysis of calcium bioavailability: A comparison of calcium citrate with calcium carbonate. American Journal of Therapeutics, 6(6), 313–321. https://doi.org/10.1097/00045391-199911000-00005 
  134. Samieipour, S., Kiani, F., Pour, Y. S., Heydarabadi, A. B., & Zade, R. R. (2016). Comparing the effects of vitamin b1 and calcium on premenstrual syndrome (PMS) among female students, Ilam-Iran. International Journal of Pediatrics, 4(9), 3517–3526. https://doi.org/10.22038/ijp.2016.7345 
  135. Samozai, M. N., & Kulkarni, A. K. (2015). Do calcium supplements increase serum and urine calcium levels in post-menopausal women? The Journal of Nutrition, Health & Aging, 19(5), 537–541. https://doi.org/10.1007/s12603-014-0532-2 
  136. Sekercioglu, N., Angeliki Veroniki, A., Thabane, L., Busse, J. W., Akhtar-Danesh, N., Iorio, A., Cruz Lopes, L., & Guyatt, G. H. (2017). Effects of different phosphate lowering strategies in patients with CKD on laboratory outcomes: A systematic review and NMA. PloS One, 12(3), e0171028. https://doi.org/10.1371/journal.pone.0171028 
  137. Sekercioglu, N., Thabane, L., Díaz Martínez, J. P., Nesrallah, G., Longo, C. J., Busse, J. W., Akhtar-Danesh, N., Agarwal, A., Al-Khalifah, R., Iorio, A., & Guyatt, G. H. (2016). Comparative effectiveness of phosphate binders in patients with chronic kidney disease: A systematic review and network meta-analysis. PloS One, 11(6), e0156891. https://doi.org/10.1371/journal.pone.0156891 
  138. Shankar, K., M, S., Raizada, P., & Jain, R. (2018). A randomized open-label clinical study comparing the efficacy, safety, and bioavailability of calcium lysinate with calcium carbonate and calcium citrate malate in osteopenia patients. Journal of Orthopaedic Case Reports, 8(4), 15–19. https://doi.org/10.13107/jocr.2250-0685.1138
  139. Sheikh, M. S., Santa Ana, C. A., Nicar, M. J., Schiller, L. R., & Fordtran, J. S. (1987). Gastrointestinal absorption of calcium from milk and calcium salts. The New England Journal of Medicine, 317(9), 532–536. https://doi.org/10.1056/NEJM198708273170903 
  140. Shobeiri, F., Araste, F. E., Ebrahimi, R., Jenabi, E., & Nazari, M. (2017). Effect of calcium on premenstrual syndrome: A double-blind randomized clinical trial. Obstetrics & Gynecology Science, 60(1), 100–105. https://doi.org/10.5468/ogs.2017.60.1.100 
  141. Silk, L. N., Greene, D. A., & Baker, M. K. (2015). The effect of calcium or calcium and vitamin d supplementation on bone mineral density in healthy males: A systematic review and meta-analysis. International Journal of Sport Nutrition and Exercise Metabolism, 25(5), 510–524. https://doi.org/10.1123/ijsnem.2014-0202 
  142. Song, L. (2017). Calcium and bone metabolism indices. Advances in Clinical Chemistry, 82, 1–46. https://doi.org/10.1016/bs.acc.2017.06.005 
  143. Specker, B., Thiex, N. W., & Sudhagoni, R. G. (2015). Does exercise influence pediatric bone? A systematic review. Clinical Orthopaedics and Related Research, 473(11), 3658–3672. https://doi.org/10.1007/s11999-015-4467-7 
  144. Straub, D. A. (2007). Calcium supplementation in clinical practice: A review of forms, doses, and indications. Nutrition in Clinical Practice, 22(3), 286–296. https://doi.org/10.1177/0115426507022003286 
  145. Sun, X., Li, H., He, X., Li, M., Yan, P., Xun, Y., Lu, C., Yang, K., & Zhang, X. (2019). The association between calcium supplement and preeclampsia and gestational hypertension: A systematic review and meta-analysis of randomized trials. Hypertension in Pregnancy, 38(2), 129–139. https://doi.org/10.1080/10641955.2019.1593445 
  146. Tabesh, M., Azadbakht, L., Faghihimani, E., Tabesh, M., & Esmaillzadeh, A. (2014). Calcium-vitamin D cosupplementation influences circulating inflammatory biomarkers and adipocytokines in vitamin D-insufficient diabetics: A randomized controlled clinical trial. The Journal of Clinical Endocrinology and Metabolism, 99(12), E2485–E2493. https://doi.org/10.1210/jc.2014-1977 
  147. Tai, V., Leung, W., Grey, A., Reid, I. R., & Bolland, M. J. (2015). Calcium intake and bone mineral density: Systematic review and meta-analysis. BMJ , 351, h4183. https://doi.org/10.1136/bmj.h4183 
  148. Tang, B. M. P., Eslick, G. D., Nowson, C., Smith, C., & Bensoussan, A. (2007). Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: A meta-analysis. The Lancet, 370(9588), 657–666. https://doi.org/10.1016/S0140-6736(07)61342-7 
  149. Tang, R., Tang, I. C., Henry, A., & Welsh, A. (2015). Limited evidence for calcium supplementation in preeclampsia prevention: A meta-analysis and systematic review. Hypertension in Pregnancy, 34(2), 181–203. https://doi.org/10.3109/10641955.2014.988353 
  150. Tankeu, A. T., Ndip Agbor, V., & Noubiap, J. J. (2017). Calcium supplementation and cardiovascular risk: A rising concern. Journal of Clinical Hypertension, 19(6), 640–646. https://doi.org/10.1111/jch.13010 
  151. Thacher, T. D., Fischer, P. R., Pettifor, J. M., Lawson, J. O., Isichei, C. O., Reading, J. C., & Chan, G. M. (1999). A comparison of calcium, vitamin D, or both for nutritional rickets in Nigerian children. The New England Journal of Medicine, 341(8), 563–568. https://doi.org/10.1056/NEJM199908193410803 
  152. Thacher, T. D., Smith, L., Fischer, P. R., Isichei, C. O., Cha, S. S., & Pettifor, J. M. (2016). Optimal dose of calcium for treatment of nutritional rickets: A randomized controlled trial. Journal of Bone and Mineral Research, 31(11), 2024–2031. https://doi.org/10.1002/jbmr.2886 
  153. Thys-Jacobs, S., Ceccarelli, S., Bierman, A., Weisman, H., Cohen, M. A., & Alvir, J. (1989). Calcium supplementation in premenstrual syndrome: A randomized crossover trial. Journal of General Internal Medicine, 4(3), 183–189. https://doi.org/10.1007/BF02599520 
  154. Thys-Jacobs, S., Starkey, P., Bernstein, D., & Tian, J. (1998). Calcium carbonate and the premenstrual syndrome: Effects on premenstrual and menstrual symptoms. Premenstrual Syndrome Study Group. American Journal of Obstetrics and Gynecology, 179(2), 444–452. https://doi.org/10.1016/s0002-9378(98)70377-1 
  155. Tondapu, P., Provost, D., Adams-Huet, B., Sims, T., Chang, C., & Sakhaee, K. (2009). Comparison of the absorption of calcium carbonate and calcium citrate after Roux-en-Y gastric bypass. Obesity Surgery, 19(9), 1256–1261. https://doi.org/10.1007/s11695-009-9850-6 
  156. Tsai, H.-H., Lin, H.-W., Simon Pickard, A., Tsai, H.-Y., & Mahady, G. B. (2012). Evaluation of documented drug interactions and contraindications associated with herbs and dietary supplements: A systematic literature review. International Journal of Clinical Practice, 66(11), 1056–1078. https://doi.org/10.1111/j.1742-1241.2012.03008.x 
  157. van Mierlo, L. A. J., Arends, L. R., Streppel, M. T., Zeegers, M. P. A., Kok, F. J., Grobbee, D. E., & Geleijnse, J. M. (2006). Blood pressure response to calcium supplementation: A meta-analysis of randomized controlled trials. Journal of Human Hypertension, 20(8), 571–580. https://doi.org/10.1038/sj.jhh.1002038 
  158. Villar, J., Abdel-Aleem, H., Merialdi, M., Mathai, M., Ali, M. M., Zavaleta, N., Purwar, M., Hofmeyr, J., Nguyen, T. N. N., Campódonico, L., Landoulsi, S., Carroli, G., Lindheimer, M., & World Health Organization Calcium Supplementation for the Prevention of Preeclampsia Trial Group. (2006). World Health Organization randomized trial of calcium supplementation among low calcium intake pregnant women. American Journal of Obstetrics and Gynecology, 194(3), 639–649. https://doi.org/10.1016/j.ajog.2006.01.068 
  159. Villar, J., & Belizán, J. M. (2000). Same nutrient, different hypotheses: Disparities in trials of calcium supplementation during pregnancy. The American Journal of Clinical Nutrition, 71(5), 1375S – 9S. https://www.ncbi.nlm.nih.gov/pubmed/10799416 
  160. Villar, J., & Repke, J. T. (1990). Calcium supplementation during pregnancy may reduce preterm delivery in high-risk populations. American Journal of Obstetrics and Gynecology, 163(4 Pt 1), 1124–1131. https://doi.org/10.1016/0002-9378(90)90669-x 
  161. Wang, L., Manson, J. E., Song, Y., & Sesso, H. D. (2010). Systematic review: Vitamin D and calcium supplementation in prevention of cardiovascular events. Annals of Internal Medicine, 152(5), 315–323. https://doi.org/10.7326/0003-4819-152-5-201003020-00010 
  162. Wang, Y., Xie, G., Huang, Y., Zhang, H., Yang, B., & Mao, Z. (2015). Calcium acetate or calcium carbonate for hyperphosphatemia of hemodialysis patients: A meta-analysis. PloS One, 10(3), e0121376. https://doi.org/10.1371/journal.pone.0121376 
  163. Wasilewski, G. B., Vervloet, M. G., & Schurgers, L. J. (2019). The bone-vasculature axis: Calcium supplementation and the role of vitamin K. Frontiers in Cardiovascular Medicine, 6, 6. https://doi.org/10.3389/fcvm.2019.00006 
  164. Wiria, M., Tran, H. M., Nguyen, P. H. B., Valencia, O., Dutta, S., & Pouteau, E. (2020). Relative bioavailability and pharmacokinetic comparison of calcium glucoheptonate with calcium carbonate. Pharmacology Research & Perspectives, 8(2), e00589. https://doi.org/10.1002/prp2.589 
  165. Xiao, Q., Murphy, R. A., Houston, D. K., Harris, T. B., Chow, W.-H., & Park, Y. (2013). Dietary and supplemental calcium intake and cardiovascular disease mortality: The National Institutes of Health-AARP diet and health study. JAMA Internal Medicine, 173(8), 639–646. https://doi.org/10.1001/jamainternmed.2013.3283 
  166. Xing, T., Hu, Y., Wang, B., & Zhu, J. (2019). Role of oral calcium supplementation alone or with vitamin D in preventing post-thyroidectomy hypocalcaemia: A meta-analysis. Medicine, 98(8), e14455. https://doi.org/10.1097/MD.0000000000014455 
  167. Yang, C., Shi, X., Xia, H., Yang, X., Liu, H., Pan, D., & Sun, G. (2020). The evidence and controversy between dietary calcium intake and calcium supplementation and the risk of cardiovascular disease: A systematic review and meta-analysis of cohort studies and randomized controlled trials. Journal of the American College of Nutrition, 39(4), 352–370. https://doi.org/10.1080/07315724.2019.1649219 
  168. Zhao, J.-G., Zeng, X.-T., Wang, J., & Liu, L. (2017). Association between calcium or vitamin d supplementation and fracture incidence in community-dwelling older adults: a systematic review and meta-analysis. The Journal of the American Medical Association, 318(24), 2466–2482. https://doi.org/10.1001/jama.2017.19344 
  169. Zhou, C., Fan, S., Zhou, L., Ni, Y., Huang, T., & Shi, Y. (1994). Clinical observation of treatment of hypertension with calcium. American Journal of Hypertension, 7(4), 363–367. https://doi.org/10.1093/ajh/7.4.363

Get more resources for your practice